Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeunile Structured version   Visualization version   GIF version

Theorem omeunile 40052
Description: The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeunile.o (𝜑𝑂 ∈ OutMeas)
omeunile.x 𝑋 = dom 𝑂
omeunile.y (𝜑𝑌 ⊆ 𝒫 𝑋)
omeunile.ct (𝜑𝑌 ≼ ω)
Assertion
Ref Expression
omeunile (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))

Proof of Theorem omeunile
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeunile.ct . 2 (𝜑𝑌 ≼ ω)
2 omeunile.y . . . . 5 (𝜑𝑌 ⊆ 𝒫 𝑋)
3 omeunile.o . . . . . . . . 9 (𝜑𝑂 ∈ OutMeas)
4 omeunile.x . . . . . . . . 9 𝑋 = dom 𝑂
53, 4unidmex 38735 . . . . . . . 8 (𝜑𝑋 ∈ V)
6 pwexg 4815 . . . . . . . 8 (𝑋 ∈ V → 𝒫 𝑋 ∈ V)
75, 6syl 17 . . . . . . 7 (𝜑 → 𝒫 𝑋 ∈ V)
8 ssexg 4769 . . . . . . 7 ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V)
92, 7, 8syl2anc 692 . . . . . 6 (𝜑𝑌 ∈ V)
10 elpwg 4143 . . . . . 6 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
119, 10syl 17 . . . . 5 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
122, 11mpbird 247 . . . 4 (𝜑𝑌 ∈ 𝒫 𝒫 𝑋)
13 omedm 40046 . . . . . . 7 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
143, 13syl 17 . . . . . 6 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
154pweqi 4139 . . . . . . . 8 𝒫 𝑋 = 𝒫 dom 𝑂
1615eqcomi 2630 . . . . . . 7 𝒫 dom 𝑂 = 𝒫 𝑋
1716a1i 11 . . . . . 6 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
1814, 17eqtr2d 2656 . . . . 5 (𝜑 → 𝒫 𝑋 = dom 𝑂)
1918pweqd 4140 . . . 4 (𝜑 → 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂)
2012, 19eleqtrd 2700 . . 3 (𝜑𝑌 ∈ 𝒫 dom 𝑂)
21 isome 40041 . . . . . 6 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦(𝑂𝑥) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
223, 21syl 17 . . . . 5 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦(𝑂𝑥) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
233, 22mpbid 222 . . . 4 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑥 ∈ 𝒫 𝑦(𝑂𝑥) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2423simprd 479 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
25 breq1 4621 . . . . 5 (𝑦 = 𝑌 → (𝑦 ≼ ω ↔ 𝑌 ≼ ω))
26 unieq 4415 . . . . . . 7 (𝑦 = 𝑌 𝑦 = 𝑌)
2726fveq2d 6157 . . . . . 6 (𝑦 = 𝑌 → (𝑂 𝑦) = (𝑂 𝑌))
28 reseq2 5356 . . . . . . 7 (𝑦 = 𝑌 → (𝑂𝑦) = (𝑂𝑌))
2928fveq2d 6157 . . . . . 6 (𝑦 = 𝑌 → (Σ^‘(𝑂𝑦)) = (Σ^‘(𝑂𝑌)))
3027, 29breq12d 4631 . . . . 5 (𝑦 = 𝑌 → ((𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)) ↔ (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌))))
3125, 30imbi12d 334 . . . 4 (𝑦 = 𝑌 → ((𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))) ↔ (𝑌 ≼ ω → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))))
3231rspcva 3296 . . 3 ((𝑌 ∈ 𝒫 dom 𝑂 ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))) → (𝑌 ≼ ω → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌))))
3320, 24, 32syl2anc 692 . 2 (𝜑 → (𝑌 ≼ ω → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌))))
341, 33mpd 15 1 (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  wss 3559  c0 3896  𝒫 cpw 4135   cuni 4407   class class class wbr 4618  dom cdm 5079  cres 5081  wf 5848  cfv 5852  (class class class)co 6610  ωcom 7019  cdom 7905  0cc0 9888  +∞cpnf 10023  cle 10027  [,]cicc 12128  Σ^csumge0 39912  OutMeascome 40036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ome 40037
This theorem is referenced by:  omeunle  40063  omeiunle  40064
  Copyright terms: Public domain W3C validator