MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omlim Structured version   Visualization version   GIF version

Theorem omlim 7477
Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omlim ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem omlim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 5691 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 simpr 475 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → Lim 𝐵)
31, 2jca 552 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵))
4 rdglim2a 7393 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥))
54adantl 480 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥))
6 omv 7456 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝐵))
7 onelon 5651 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 omv 7456 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥))
97, 8sylan2 489 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → (𝐴 ·𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥))
109anassrs 677 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → (𝐴 ·𝑜 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥))
1110iuneq2dv 4472 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 (𝐴 ·𝑜 𝑥) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥))
126, 11eqeq12d 2624 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥)))
1312adantrr 748 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +𝑜 𝐴)), ∅)‘𝑥)))
145, 13mpbird 245 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥))
153, 14sylan2 489 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 ·𝑜 𝐵) = 𝑥𝐵 (𝐴 ·𝑜 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  c0 3873   ciun 4449  cmpt 4637  Oncon0 5626  Lim wlim 5627  cfv 5790  (class class class)co 6527  reccrdg 7369   +𝑜 coa 7421   ·𝑜 comu 7422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-omul 7429
This theorem is referenced by:  omcl  7480  om0r  7483  om1r  7487  omordi  7510  omwordri  7516  omordlim  7521  omlimcl  7522  odi  7523  omass  7524  omeulem1  7526  oeoalem  7540  oeoelem  7542  omabslem  7590  omabs  7591
  Copyright terms: Public domain W3C validator