HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsii Structured version   Visualization version   GIF version

Theorem omlsii 29182
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsi.1 𝐴C
omlsi.2 𝐵S
omlsi.3 𝐴𝐵
omlsi.4 (𝐵 ∩ (⊥‘𝐴)) = 0
Assertion
Ref Expression
omlsii 𝐴 = 𝐵

Proof of Theorem omlsii
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omlsi.3 . 2 𝐴𝐵
2 omlsi.1 . . . . 5 𝐴C
3 omlsi.2 . . . . . 6 𝐵S
43sheli 28993 . . . . 5 (𝑥𝐵𝑥 ∈ ℋ)
52, 4pjhthlem2 29171 . . . 4 (𝑥𝐵 → ∃𝑦𝐴𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧))
6 eqeq1 2827 . . . . . . . . 9 (𝑥 = if(𝑥𝐵, 𝑥, 0) → (𝑥 = (𝑦 + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧)))
7 eleq1 2902 . . . . . . . . 9 (𝑥 = if(𝑥𝐵, 𝑥, 0) → (𝑥𝐴 ↔ if(𝑥𝐵, 𝑥, 0) ∈ 𝐴))
86, 7imbi12d 347 . . . . . . . 8 (𝑥 = if(𝑥𝐵, 𝑥, 0) → ((𝑥 = (𝑦 + 𝑧) → 𝑥𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
9 oveq1 7165 . . . . . . . . . 10 (𝑦 = if(𝑦𝐴, 𝑦, 0) → (𝑦 + 𝑧) = (if(𝑦𝐴, 𝑦, 0) + 𝑧))
109eqeq2d 2834 . . . . . . . . 9 (𝑦 = if(𝑦𝐴, 𝑦, 0) → (if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧)))
1110imbi1d 344 . . . . . . . 8 (𝑦 = if(𝑦𝐴, 𝑦, 0) → ((if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
12 oveq2 7166 . . . . . . . . . 10 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → (if(𝑦𝐴, 𝑦, 0) + 𝑧) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)))
1312eqeq2d 2834 . . . . . . . . 9 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0))))
1413imbi1d 344 . . . . . . . 8 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → ((if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
152chshii 29006 . . . . . . . . 9 𝐴S
16 omlsi.4 . . . . . . . . 9 (𝐵 ∩ (⊥‘𝐴)) = 0
17 sh0 28995 . . . . . . . . . . 11 (𝐵S → 0𝐵)
183, 17ax-mp 5 . . . . . . . . . 10 0𝐵
1918elimel 4536 . . . . . . . . 9 if(𝑥𝐵, 𝑥, 0) ∈ 𝐵
20 ch0 29007 . . . . . . . . . . 11 (𝐴C → 0𝐴)
212, 20ax-mp 5 . . . . . . . . . 10 0𝐴
2221elimel 4536 . . . . . . . . 9 if(𝑦𝐴, 𝑦, 0) ∈ 𝐴
23 shocsh 29063 . . . . . . . . . . . 12 (𝐴S → (⊥‘𝐴) ∈ S )
2415, 23ax-mp 5 . . . . . . . . . . 11 (⊥‘𝐴) ∈ S
25 sh0 28995 . . . . . . . . . . 11 ((⊥‘𝐴) ∈ S → 0 ∈ (⊥‘𝐴))
2624, 25ax-mp 5 . . . . . . . . . 10 0 ∈ (⊥‘𝐴)
2726elimel 4536 . . . . . . . . 9 if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) ∈ (⊥‘𝐴)
2815, 3, 1, 16, 19, 22, 27omlsilem 29181 . . . . . . . 8 (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)
298, 11, 14, 28dedth3h 4527 . . . . . . 7 ((𝑥𝐵𝑦𝐴𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
30293expia 1117 . . . . . 6 ((𝑥𝐵𝑦𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴)))
3130rexlimdv 3285 . . . . 5 ((𝑥𝐵𝑦𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
3231rexlimdva 3286 . . . 4 (𝑥𝐵 → (∃𝑦𝐴𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
335, 32mpd 15 . . 3 (𝑥𝐵𝑥𝐴)
3433ssriv 3973 . 2 𝐵𝐴
351, 34eqssi 3985 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141  cin 3937  wss 3938  ifcif 4469  cfv 6357  (class class class)co 7158   + cva 28699  0c0v 28703   S csh 28707   C cch 28708  cort 28709  0c0h 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864  ax-hcompl 28981
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lm 21839  df-haus 21925  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-cfil 23860  df-cau 23861  df-cmet 23862  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-ssp 28501  df-ph 28592  df-cbn 28642  df-hnorm 28747  df-hba 28748  df-hvsub 28750  df-hlim 28751  df-hcau 28752  df-sh 28986  df-ch 29000  df-oc 29031  df-ch0 29032
This theorem is referenced by:  omlsi  29183  ococi  29184  qlaxr3i  29415  hatomistici  30141
  Copyright terms: Public domain W3C validator