HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsii Structured version   Visualization version   GIF version

Theorem omlsii 28102
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsi.1 𝐴C
omlsi.2 𝐵S
omlsi.3 𝐴𝐵
omlsi.4 (𝐵 ∩ (⊥‘𝐴)) = 0
Assertion
Ref Expression
omlsii 𝐴 = 𝐵

Proof of Theorem omlsii
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omlsi.3 . 2 𝐴𝐵
2 omlsi.1 . . . . 5 𝐴C
3 omlsi.2 . . . . . 6 𝐵S
43sheli 27911 . . . . 5 (𝑥𝐵𝑥 ∈ ℋ)
52, 4pjhthlem2 28091 . . . 4 (𝑥𝐵 → ∃𝑦𝐴𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧))
6 eqeq1 2630 . . . . . . . . 9 (𝑥 = if(𝑥𝐵, 𝑥, 0) → (𝑥 = (𝑦 + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧)))
7 eleq1 2692 . . . . . . . . 9 (𝑥 = if(𝑥𝐵, 𝑥, 0) → (𝑥𝐴 ↔ if(𝑥𝐵, 𝑥, 0) ∈ 𝐴))
86, 7imbi12d 334 . . . . . . . 8 (𝑥 = if(𝑥𝐵, 𝑥, 0) → ((𝑥 = (𝑦 + 𝑧) → 𝑥𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
9 oveq1 6612 . . . . . . . . . 10 (𝑦 = if(𝑦𝐴, 𝑦, 0) → (𝑦 + 𝑧) = (if(𝑦𝐴, 𝑦, 0) + 𝑧))
109eqeq2d 2636 . . . . . . . . 9 (𝑦 = if(𝑦𝐴, 𝑦, 0) → (if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧)))
1110imbi1d 331 . . . . . . . 8 (𝑦 = if(𝑦𝐴, 𝑦, 0) → ((if(𝑥𝐵, 𝑥, 0) = (𝑦 + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
12 oveq2 6613 . . . . . . . . . 10 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → (if(𝑦𝐴, 𝑦, 0) + 𝑧) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)))
1312eqeq2d 2636 . . . . . . . . 9 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) ↔ if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0))))
1413imbi1d 331 . . . . . . . 8 (𝑧 = if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) → ((if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + 𝑧) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴) ↔ (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)))
152chshii 27924 . . . . . . . . 9 𝐴S
16 omlsi.4 . . . . . . . . 9 (𝐵 ∩ (⊥‘𝐴)) = 0
17 sh0 27913 . . . . . . . . . . 11 (𝐵S → 0𝐵)
183, 17ax-mp 5 . . . . . . . . . 10 0𝐵
1918elimel 4127 . . . . . . . . 9 if(𝑥𝐵, 𝑥, 0) ∈ 𝐵
20 ch0 27925 . . . . . . . . . . 11 (𝐴C → 0𝐴)
212, 20ax-mp 5 . . . . . . . . . 10 0𝐴
2221elimel 4127 . . . . . . . . 9 if(𝑦𝐴, 𝑦, 0) ∈ 𝐴
23 shocsh 27983 . . . . . . . . . . . 12 (𝐴S → (⊥‘𝐴) ∈ S )
2415, 23ax-mp 5 . . . . . . . . . . 11 (⊥‘𝐴) ∈ S
25 sh0 27913 . . . . . . . . . . 11 ((⊥‘𝐴) ∈ S → 0 ∈ (⊥‘𝐴))
2624, 25ax-mp 5 . . . . . . . . . 10 0 ∈ (⊥‘𝐴)
2726elimel 4127 . . . . . . . . 9 if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0) ∈ (⊥‘𝐴)
2815, 3, 1, 16, 19, 22, 27omlsilem 28101 . . . . . . . 8 (if(𝑥𝐵, 𝑥, 0) = (if(𝑦𝐴, 𝑦, 0) + if(𝑧 ∈ (⊥‘𝐴), 𝑧, 0)) → if(𝑥𝐵, 𝑥, 0) ∈ 𝐴)
298, 11, 14, 28dedth3h 4118 . . . . . . 7 ((𝑥𝐵𝑦𝐴𝑧 ∈ (⊥‘𝐴)) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
30293expia 1264 . . . . . 6 ((𝑥𝐵𝑦𝐴) → (𝑧 ∈ (⊥‘𝐴) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴)))
3130rexlimdv 3028 . . . . 5 ((𝑥𝐵𝑦𝐴) → (∃𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
3231rexlimdva 3029 . . . 4 (𝑥𝐵 → (∃𝑦𝐴𝑧 ∈ (⊥‘𝐴)𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
335, 32mpd 15 . . 3 (𝑥𝐵𝑥𝐴)
3433ssriv 3592 . 2 𝐵𝐴
351, 34eqssi 3604 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wrex 2913  cin 3559  wss 3560  ifcif 4063  cfv 5850  (class class class)co 6605   + cva 27617  0c0v 27621   S csh 27625   C cch 27626  cort 27627  0c0h 27632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cc 9202  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961  ax-hilex 27696  ax-hfvadd 27697  ax-hvcom 27698  ax-hvass 27699  ax-hv0cl 27700  ax-hvaddid 27701  ax-hfvmul 27702  ax-hvmulid 27703  ax-hvmulass 27704  ax-hvdistr1 27705  ax-hvdistr2 27706  ax-hvmul0 27707  ax-hfi 27776  ax-his1 27779  ax-his2 27780  ax-his3 27781  ax-his4 27782  ax-hcompl 27899
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-omul 7511  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-acn 8713  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12120  df-icc 12121  df-fz 12266  df-fl 12530  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-rlim 14149  df-rest 15999  df-topgen 16020  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-top 20616  df-bases 20617  df-topon 20618  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lm 20938  df-haus 21024  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-cfil 22956  df-cau 22957  df-cmet 22958  df-grpo 27187  df-gid 27188  df-ginv 27189  df-gdiv 27190  df-ablo 27239  df-vc 27254  df-nv 27287  df-va 27290  df-ba 27291  df-sm 27292  df-0v 27293  df-vs 27294  df-nmcv 27295  df-ims 27296  df-ssp 27417  df-ph 27508  df-cbn 27559  df-hnorm 27665  df-hba 27666  df-hvsub 27668  df-hlim 27669  df-hcau 27670  df-sh 27904  df-ch 27918  df-oc 27949  df-ch0 27950
This theorem is referenced by:  omlsi  28103  ococi  28104  qlaxr3i  28335  hatomistici  29061
  Copyright terms: Public domain W3C validator