Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndadd2rd Structured version   Visualization version   GIF version

Theorem omndadd2rd 29837
Description: In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
omndadd.0 𝐵 = (Base‘𝑀)
omndadd.1 = (le‘𝑀)
omndadd.2 + = (+g𝑀)
omndadd2d.m (𝜑𝑀 ∈ oMnd)
omndadd2d.w (𝜑𝑊𝐵)
omndadd2d.x (𝜑𝑋𝐵)
omndadd2d.y (𝜑𝑌𝐵)
omndadd2d.z (𝜑𝑍𝐵)
omndadd2d.1 (𝜑𝑋 𝑍)
omndadd2d.2 (𝜑𝑌 𝑊)
omndadd2rd.c (𝜑 → (oppg𝑀) ∈ oMnd)
Assertion
Ref Expression
omndadd2rd (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))

Proof of Theorem omndadd2rd
StepHypRef Expression
1 omndadd2d.m . . 3 (𝜑𝑀 ∈ oMnd)
2 omndtos 29833 . . 3 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
3 tospos 29786 . . 3 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
41, 2, 33syl 18 . 2 (𝜑𝑀 ∈ Poset)
5 omndmnd 29832 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
61, 5syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
7 omndadd2d.x . . . 4 (𝜑𝑋𝐵)
8 omndadd2d.y . . . 4 (𝜑𝑌𝐵)
9 omndadd.0 . . . . 5 𝐵 = (Base‘𝑀)
10 omndadd.2 . . . . 5 + = (+g𝑀)
119, 10mndcl 17348 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
126, 7, 8, 11syl3anc 1366 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
13 omndadd2d.w . . . 4 (𝜑𝑊𝐵)
149, 10mndcl 17348 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑋𝐵𝑊𝐵) → (𝑋 + 𝑊) ∈ 𝐵)
156, 7, 13, 14syl3anc 1366 . . 3 (𝜑 → (𝑋 + 𝑊) ∈ 𝐵)
16 omndadd2d.z . . . 4 (𝜑𝑍𝐵)
179, 10mndcl 17348 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
186, 16, 13, 17syl3anc 1366 . . 3 (𝜑 → (𝑍 + 𝑊) ∈ 𝐵)
1912, 15, 183jca 1261 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵))
20 omndadd2rd.c . . 3 (𝜑 → (oppg𝑀) ∈ oMnd)
21 omndadd2d.2 . . 3 (𝜑𝑌 𝑊)
22 omndadd.1 . . . 4 = (le‘𝑀)
239, 22, 10omndaddr 29835 . . 3 (((oppg𝑀) ∈ oMnd ∧ (𝑌𝐵𝑊𝐵𝑋𝐵) ∧ 𝑌 𝑊) → (𝑋 + 𝑌) (𝑋 + 𝑊))
2420, 8, 13, 7, 21, 23syl131anc 1379 . 2 (𝜑 → (𝑋 + 𝑌) (𝑋 + 𝑊))
25 omndadd2d.1 . . 3 (𝜑𝑋 𝑍)
269, 22, 10omndadd 29834 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑍𝐵𝑊𝐵) ∧ 𝑋 𝑍) → (𝑋 + 𝑊) (𝑍 + 𝑊))
271, 7, 16, 13, 25, 26syl131anc 1379 . 2 (𝜑 → (𝑋 + 𝑊) (𝑍 + 𝑊))
289, 22postr 17000 . . 3 ((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → (((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊)) → (𝑋 + 𝑌) (𝑍 + 𝑊)))
2928imp 444 . 2 (((𝑀 ∈ Poset ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑋 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) ∧ ((𝑋 + 𝑌) (𝑋 + 𝑊) ∧ (𝑋 + 𝑊) (𝑍 + 𝑊))) → (𝑋 + 𝑌) (𝑍 + 𝑊))
304, 19, 24, 27, 29syl22anc 1367 1 (𝜑 → (𝑋 + 𝑌) (𝑍 + 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  lecple 15995  Posetcpo 16987  Tosetctos 17080  Mndcmnd 17341  oppgcoppg 17821  oMndcomnd 29825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-dec 11532  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-ple 16008  df-poset 16993  df-toset 17081  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-oppg 17822  df-omnd 29827
This theorem is referenced by:  archiabllem2c  29877
  Copyright terms: Public domain W3C validator