Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul2 Structured version   Visualization version   GIF version

Theorem omndmul2 29494
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul2.2 · = (.g𝑀)
omndmul2.3 0 = (0g𝑀)
Assertion
Ref Expression
omndmul2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))

Proof of Theorem omndmul2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1038 . . 3 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
2 anass 680 . . . 4 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ↔ (𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)))
32anbi1i 730 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0)) ∧ 0 𝑋))
41, 3bitr4i 267 . 2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) ↔ (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋))
5 simplr 791 . . 3 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 𝑁 ∈ ℕ0)
6 oveq1 6611 . . . . 5 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
76breq2d 4625 . . . 4 (𝑚 = 0 → ( 0 (𝑚 · 𝑋) ↔ 0 (0 · 𝑋)))
8 oveq1 6611 . . . . 5 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
98breq2d 4625 . . . 4 (𝑚 = 𝑛 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑛 · 𝑋)))
10 oveq1 6611 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
1110breq2d 4625 . . . 4 (𝑚 = (𝑛 + 1) → ( 0 (𝑚 · 𝑋) ↔ 0 ((𝑛 + 1) · 𝑋)))
12 oveq1 6611 . . . . 5 (𝑚 = 𝑁 → (𝑚 · 𝑋) = (𝑁 · 𝑋))
1312breq2d 4625 . . . 4 (𝑚 = 𝑁 → ( 0 (𝑚 · 𝑋) ↔ 0 (𝑁 · 𝑋)))
14 omndtos 29487 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
15 tospos 29440 . . . . . . . 8 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
1614, 15syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 𝑀 ∈ Poset)
17 omndmnd 29486 . . . . . . . 8 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
18 omndmul.0 . . . . . . . . 9 𝐵 = (Base‘𝑀)
19 omndmul2.3 . . . . . . . . 9 0 = (0g𝑀)
2018, 19mndidcl 17229 . . . . . . . 8 (𝑀 ∈ Mnd → 0𝐵)
2117, 20syl 17 . . . . . . 7 (𝑀 ∈ oMnd → 0𝐵)
22 omndmul.1 . . . . . . . 8 = (le‘𝑀)
2318, 22posref 16872 . . . . . . 7 ((𝑀 ∈ Poset ∧ 0𝐵) → 0 0 )
2416, 21, 23syl2anc 692 . . . . . 6 (𝑀 ∈ oMnd → 0 0 )
2524ad3antrrr 765 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 0 )
26 omndmul2.2 . . . . . . 7 · = (.g𝑀)
2718, 19, 26mulg0 17467 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2827ad3antlr 766 . . . . 5 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → (0 · 𝑋) = 0 )
2925, 28breqtrrd 4641 . . . 4 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (0 · 𝑋))
3016ad5antr 769 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Poset)
3117ad5antr 769 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑀 ∈ Mnd)
3231, 20syl 17 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0𝐵)
33 simplr 791 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑛 ∈ ℕ0)
34 simp-5r 808 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 𝑋𝐵)
3518, 26mulgnn0cl 17479 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
3631, 33, 34, 35syl3anc 1323 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ∈ 𝐵)
37 simpr32 1150 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 𝑛 ∈ ℕ0)
38 1nn0 11252 . . . . . . . . . . 11 1 ∈ ℕ0
3938a1i 11 . . . . . . . . . 10 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → 1 ∈ ℕ0)
4037, 39nn0addcld 11299 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0 ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋)))) → (𝑛 + 1) ∈ ℕ0)
41403anassrs 1287 . . . . . . . 8 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ ( 0 𝑋𝑛 ∈ ℕ00 (𝑛 · 𝑋))) → (𝑛 + 1) ∈ ℕ0)
42413anassrs 1287 . . . . . . 7 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 + 1) ∈ ℕ0)
4318, 26mulgnn0cl 17479 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑛 + 1) ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) · 𝑋) ∈ 𝐵)
4431, 42, 34, 43syl3anc 1323 . . . . . 6 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ((𝑛 + 1) · 𝑋) ∈ 𝐵)
4532, 36, 443jca 1240 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵))
46 simpr 477 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 (𝑛 · 𝑋))
47 simp-4l 805 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ oMnd)
4817ad4antr 767 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
4948, 20syl 17 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0𝐵)
50 simp-4r 806 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
51 simpr 477 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5248, 51, 50, 35syl3anc 1323 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
53 simplr 791 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 0 𝑋)
54 eqid 2621 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
5518, 22, 54omndadd 29488 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5647, 49, 50, 52, 53, 55syl131anc 1336 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) (𝑋(+g𝑀)(𝑛 · 𝑋)))
5718, 54, 19mndlid 17232 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑛 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5848, 52, 57syl2anc 692 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ( 0 (+g𝑀)(𝑛 · 𝑋)) = (𝑛 · 𝑋))
5938a1i 11 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℕ0)
6018, 26, 54mulgnn0dir 17492 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (1 ∈ ℕ0𝑛 ∈ ℕ0𝑋𝐵)) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
6148, 59, 51, 50, 60syl13anc 1325 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)))
62 1cnd 10000 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 1 ∈ ℂ)
63 simpr3 1067 . . . . . . . . . . . 12 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
6463nn0cnd 11297 . . . . . . . . . . 11 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
6562, 64addcomd 10182 . . . . . . . . . 10 (((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℕ00 𝑋𝑛 ∈ ℕ0)) → (1 + 𝑛) = (𝑛 + 1))
66653anassrs 1287 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 + 𝑛) = (𝑛 + 1))
6766oveq1d 6619 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 + 𝑛) · 𝑋) = ((𝑛 + 1) · 𝑋))
6818, 26mulg1 17469 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
6950, 68syl 17 . . . . . . . . 9 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
7069oveq1d 6619 . . . . . . . 8 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → ((1 · 𝑋)(+g𝑀)(𝑛 · 𝑋)) = (𝑋(+g𝑀)(𝑛 · 𝑋)))
7161, 67, 703eqtr3rd 2664 . . . . . . 7 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑋(+g𝑀)(𝑛 · 𝑋)) = ((𝑛 + 1) · 𝑋))
7256, 58, 713brtr3d 4644 . . . . . 6 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7372adantr 481 . . . . 5 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))
7418, 22postr 16874 . . . . . 6 ((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) → (( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋)) → 0 ((𝑛 + 1) · 𝑋)))
7574imp 445 . . . . 5 (((𝑀 ∈ Poset ∧ ( 0𝐵 ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑋) ∈ 𝐵)) ∧ ( 0 (𝑛 · 𝑋) ∧ (𝑛 · 𝑋) ((𝑛 + 1) · 𝑋))) → 0 ((𝑛 + 1) · 𝑋))
7630, 45, 46, 73, 75syl22anc 1324 . . . 4 ((((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑛 ∈ ℕ0) ∧ 0 (𝑛 · 𝑋)) → 0 ((𝑛 + 1) · 𝑋))
777, 9, 11, 13, 29, 76nn0indd 11418 . . 3 (((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) ∧ 𝑁 ∈ ℕ0) → 0 (𝑁 · 𝑋))
785, 77mpdan 701 . 2 ((((𝑀 ∈ oMnd ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
794, 78sylbi 207 1 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑁 ∈ ℕ0) ∧ 0 𝑋) → 0 (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  0cn0 11236  Basecbs 15781  +gcplusg 15862  lecple 15869  0gc0g 16021  Posetcpo 16861  Tosetctos 16954  Mndcmnd 17215  .gcmg 17461  oMndcomnd 29479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742  df-0g 16023  df-preset 16849  df-poset 16867  df-toset 16955  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mulg 17462  df-omnd 29481
This theorem is referenced by:  omndmul3  29495
  Copyright terms: Public domain W3C validator