Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmul3 Structured version   Visualization version   GIF version

Theorem omndmul3 29687
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
omndmul.0 𝐵 = (Base‘𝑀)
omndmul.1 = (le‘𝑀)
omndmul3.m · = (.g𝑀)
omndmul3.0 0 = (0g𝑀)
omndmul3.o (𝜑𝑀 ∈ oMnd)
omndmul3.1 (𝜑𝑁 ∈ ℕ0)
omndmul3.2 (𝜑𝑃 ∈ ℕ0)
omndmul3.3 (𝜑𝑁𝑃)
omndmul3.4 (𝜑𝑋𝐵)
omndmul3.5 (𝜑0 𝑋)
Assertion
Ref Expression
omndmul3 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))

Proof of Theorem omndmul3
StepHypRef Expression
1 omndmul3.o . . 3 (𝜑𝑀 ∈ oMnd)
2 omndmnd 29678 . . . . 5 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ Mnd)
4 omndmul.0 . . . . 5 𝐵 = (Base‘𝑀)
5 omndmul3.0 . . . . 5 0 = (0g𝑀)
64, 5mndidcl 17289 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
73, 6syl 17 . . 3 (𝜑0𝐵)
8 omndmul3.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
9 omndmul3.2 . . . . 5 (𝜑𝑃 ∈ ℕ0)
10 omndmul3.3 . . . . 5 (𝜑𝑁𝑃)
11 nn0sub 11328 . . . . . 6 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) → (𝑁𝑃 ↔ (𝑃𝑁) ∈ ℕ0))
1211biimpa 501 . . . . 5 (((𝑁 ∈ ℕ0𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝑃𝑁) ∈ ℕ0)
138, 9, 10, 12syl21anc 1323 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℕ0)
14 omndmul3.4 . . . 4 (𝜑𝑋𝐵)
15 omndmul3.m . . . . 5 · = (.g𝑀)
164, 15mulgnn0cl 17539 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑃𝑁) ∈ ℕ0𝑋𝐵) → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
173, 13, 14, 16syl3anc 1324 . . 3 (𝜑 → ((𝑃𝑁) · 𝑋) ∈ 𝐵)
184, 15mulgnn0cl 17539 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
193, 8, 14, 18syl3anc 1324 . . 3 (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
20 omndmul3.5 . . . 4 (𝜑0 𝑋)
21 omndmul.1 . . . . 5 = (le‘𝑀)
224, 21, 15, 5omndmul2 29686 . . . 4 ((𝑀 ∈ oMnd ∧ (𝑋𝐵 ∧ (𝑃𝑁) ∈ ℕ0) ∧ 0 𝑋) → 0 ((𝑃𝑁) · 𝑋))
231, 14, 13, 20, 22syl121anc 1329 . . 3 (𝜑0 ((𝑃𝑁) · 𝑋))
24 eqid 2620 . . . 4 (+g𝑀) = (+g𝑀)
254, 21, 24omndadd 29680 . . 3 ((𝑀 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑃𝑁) · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) ∧ 0 ((𝑃𝑁) · 𝑋)) → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
261, 7, 17, 19, 23, 25syl131anc 1337 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
274, 24, 5mndlid 17292 . . 3 ((𝑀 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
283, 19, 27syl2anc 692 . 2 (𝜑 → ( 0 (+g𝑀)(𝑁 · 𝑋)) = (𝑁 · 𝑋))
294, 15, 24mulgnn0dir 17552 . . . 4 ((𝑀 ∈ Mnd ∧ ((𝑃𝑁) ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
303, 13, 8, 14, 29syl13anc 1326 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)))
319nn0cnd 11338 . . . . 5 (𝜑𝑃 ∈ ℂ)
328nn0cnd 11338 . . . . 5 (𝜑𝑁 ∈ ℂ)
3331, 32npcand 10381 . . . 4 (𝜑 → ((𝑃𝑁) + 𝑁) = 𝑃)
3433oveq1d 6650 . . 3 (𝜑 → (((𝑃𝑁) + 𝑁) · 𝑋) = (𝑃 · 𝑋))
3530, 34eqtr3d 2656 . 2 (𝜑 → (((𝑃𝑁) · 𝑋)(+g𝑀)(𝑁 · 𝑋)) = (𝑃 · 𝑋))
3626, 28, 353brtr3d 4675 1 (𝜑 → (𝑁 · 𝑋) (𝑃 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988   class class class wbr 4644  cfv 5876  (class class class)co 6635   + caddc 9924  cle 10060  cmin 10251  0cn0 11277  Basecbs 15838  +gcplusg 15922  lecple 15929  0gc0g 16081  Mndcmnd 17275  .gcmg 17521  oMndcomnd 29671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-seq 12785  df-0g 16083  df-preset 16909  df-poset 16927  df-toset 17015  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mulg 17522  df-omnd 29673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator