MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem2 Structured version   Visualization version   GIF version

Theorem omopthlem2 8277
Description: Lemma for omopthi 8278. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem2.1 𝐴 ∈ ω
omopthlem2.2 𝐵 ∈ ω
omopthlem2.3 𝐶 ∈ ω
omopthlem2.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthlem2 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))

Proof of Theorem omopthlem2
StepHypRef Expression
1 omopthlem2.3 . . . . . . 7 𝐶 ∈ ω
21, 1nnmcli 8235 . . . . . 6 (𝐶 ·o 𝐶) ∈ ω
3 omopthlem2.4 . . . . . 6 𝐷 ∈ ω
42, 3nnacli 8234 . . . . 5 ((𝐶 ·o 𝐶) +o 𝐷) ∈ ω
54nnoni 7581 . . . 4 ((𝐶 ·o 𝐶) +o 𝐷) ∈ On
65onirri 6291 . . 3 ¬ ((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷)
7 eleq1 2900 . . 3 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → (((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)))
86, 7mtbii 328 . 2 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
9 nnaword1 8249 . . . 4 (((𝐶 ·o 𝐶) ∈ ω ∧ 𝐷 ∈ ω) → (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷))
102, 3, 9mp2an 690 . . 3 (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷)
11 omopthlem2.2 . . . . . . . . 9 𝐵 ∈ ω
12 omopthlem2.1 . . . . . . . . . . 11 𝐴 ∈ ω
1312, 11nnacli 8234 . . . . . . . . . 10 (𝐴 +o 𝐵) ∈ ω
1413, 12nnacli 8234 . . . . . . . . 9 ((𝐴 +o 𝐵) +o 𝐴) ∈ ω
15 nnaword1 8249 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)))
1611, 14, 15mp2an 690 . . . . . . . 8 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴))
17 nnacom 8237 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵))
1811, 14, 17mp2an 690 . . . . . . . 8 (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
1916, 18sseqtri 4002 . . . . . . 7 𝐵 ⊆ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
20 nnaass 8242 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2113, 12, 11, 20mp3an 1457 . . . . . . . 8 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
22 nnm2 8270 . . . . . . . . 9 ((𝐴 +o 𝐵) ∈ ω → ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2313, 22ax-mp 5 . . . . . . . 8 ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
2421, 23eqtr4i 2847 . . . . . . 7 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) ·o 2o)
2519, 24sseqtri 4002 . . . . . 6 𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o)
26 2onn 8260 . . . . . . . 8 2o ∈ ω
2713, 26nnmcli 8235 . . . . . . 7 ((𝐴 +o 𝐵) ·o 2o) ∈ ω
2813, 13nnmcli 8235 . . . . . . 7 ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω
29 nnawordi 8241 . . . . . . 7 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω ∧ ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω) → (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))))
3011, 27, 28, 29mp3an 1457 . . . . . 6 (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3125, 30ax-mp 5 . . . . 5 (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
32 nnacom 8237 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3328, 11, 32mp2an 690 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
34 nnacom 8237 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3528, 27, 34mp2an 690 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
3631, 33, 353sstr4i 4009 . . . 4 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
3713, 1omopthlem1 8276 . . . 4 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶))
3828, 11nnacli 8234 . . . . . 6 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ω
3938nnoni 7581 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On
402nnoni 7581 . . . . 5 (𝐶 ·o 𝐶) ∈ On
41 ontr2 6232 . . . . 5 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On ∧ (𝐶 ·o 𝐶) ∈ On) → (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)))
4239, 40, 41mp2an 690 . . . 4 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4336, 37, 42sylancr 589 . . 3 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4410, 43sseldi 3964 . 2 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
458, 44nsyl3 140 1 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3935  Oncon0 6185  (class class class)co 7150  ωcom 7574  2oc2o 8090   +o coa 8093   ·o comu 8094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101
This theorem is referenced by:  omopthi  8278
  Copyright terms: Public domain W3C validator