MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omordi Structured version   Visualization version   GIF version

Theorem omordi 7591
Description: Ordering property of ordinal multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omordi (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Proof of Theorem omordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5707 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
21ex 450 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴 ∈ On))
3 eleq2 2687 . . . . . . . . . 10 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
4 oveq2 6612 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 ∅))
54eleq2d 2684 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅)))
63, 5imbi12d 334 . . . . . . . . 9 (𝑥 = ∅ → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅))))
7 eleq2 2687 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
8 oveq2 6612 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝑦))
98eleq2d 2684 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))
107, 9imbi12d 334 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))))
11 eleq2 2687 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
12 oveq2 6612 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 suc 𝑦))
1312eleq2d 2684 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))
1411, 13imbi12d 334 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))
15 eleq2 2687 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
16 oveq2 6612 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝐵))
1716eleq2d 2684 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
1815, 17imbi12d 334 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
19 noel 3895 . . . . . . . . . . 11 ¬ 𝐴 ∈ ∅
2019pm2.21i 116 . . . . . . . . . 10 (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅))
2120a1i 11 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅)))
22 elsuci 5750 . . . . . . . . . . . . . . 15 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
23 omcl 7561 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 ·𝑜 𝑦) ∈ On)
24 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → 𝐶 ∈ On)
2523, 24jca 554 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → ((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On))
26 oaword1 7577 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) → (𝐶 ·𝑜 𝑦) ⊆ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
2726sseld 3582 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
2827imim2d 57 . . . . . . . . . . . . . . . . . . 19 (((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))))
2928imp 445 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3029adantrl 751 . . . . . . . . . . . . . . . . 17 ((((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
31 oaord1 7576 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3231biimpa 501 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
33 oveq2 6612 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝑦))
3433eleq1d 2683 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶) ↔ (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3532, 34syl5ibrcom 237 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3635adantrr 752 . . . . . . . . . . . . . . . . 17 ((((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3730, 36jaod 395 . . . . . . . . . . . . . . . 16 ((((𝐶 ·𝑜 𝑦) ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3825, 37sylan 488 . . . . . . . . . . . . . . 15 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3922, 38syl5 34 . . . . . . . . . . . . . 14 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
40 omsuc 7551 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 ·𝑜 suc 𝑦) = ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
4140eleq2d 2684 . . . . . . . . . . . . . . 15 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦) ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4241adantr 481 . . . . . . . . . . . . . 14 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦) ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4339, 42sylibrd 249 . . . . . . . . . . . . 13 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))
4443exp43 639 . . . . . . . . . . . 12 (𝐶 ∈ On → (𝑦 ∈ On → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
4544com12 32 . . . . . . . . . . 11 (𝑦 ∈ On → (𝐶 ∈ On → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
4645adantld 483 . . . . . . . . . 10 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
4746impd 447 . . . . . . . . 9 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))))
48 id 22 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ On ∧ Lim 𝑥) → (𝐶 ∈ On ∧ Lim 𝑥))
4948ad2ant2r 782 . . . . . . . . . . . . . . 15 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐶)) → (𝐶 ∈ On ∧ Lim 𝑥))
50 limsuc 6996 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
5150biimpa 501 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴𝑥) → suc 𝐴𝑥)
52 oveq2 6612 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝐴 → (𝐶 ·𝑜 𝑦) = (𝐶 ·𝑜 suc 𝐴))
5352ssiun2s 4530 . . . . . . . . . . . . . . . . . 18 (suc 𝐴𝑥 → (𝐶 ·𝑜 suc 𝐴) ⊆ 𝑦𝑥 (𝐶 ·𝑜 𝑦))
5451, 53syl 17 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐴𝑥) → (𝐶 ·𝑜 suc 𝐴) ⊆ 𝑦𝑥 (𝐶 ·𝑜 𝑦))
5554adantll 749 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ 𝐴𝑥) → (𝐶 ·𝑜 suc 𝐴) ⊆ 𝑦𝑥 (𝐶 ·𝑜 𝑦))
56 vex 3189 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
57 omlim 7558 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐶 ·𝑜 𝑥) = 𝑦𝑥 (𝐶 ·𝑜 𝑦))
5856, 57mpanr1 718 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ On ∧ Lim 𝑥) → (𝐶 ·𝑜 𝑥) = 𝑦𝑥 (𝐶 ·𝑜 𝑦))
5958adantr 481 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ 𝐴𝑥) → (𝐶 ·𝑜 𝑥) = 𝑦𝑥 (𝐶 ·𝑜 𝑦))
6055, 59sseqtr4d 3621 . . . . . . . . . . . . . . 15 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ 𝐴𝑥) → (𝐶 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝑥))
6149, 60sylan 488 . . . . . . . . . . . . . 14 ((((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐶)) ∧ 𝐴𝑥) → (𝐶 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝑥))
62 omcl 7561 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ·𝑜 𝐴) ∈ On)
63 oaord1 7576 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·𝑜 𝐴) ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝐴) +𝑜 𝐶)))
6462, 63sylan 488 . . . . . . . . . . . . . . . . . . 19 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝐴) +𝑜 𝐶)))
6564anabss1 854 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐶 ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝐴) +𝑜 𝐶)))
6665biimpa 501 . . . . . . . . . . . . . . . . 17 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝐴) +𝑜 𝐶))
67 omsuc 7551 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ·𝑜 suc 𝐴) = ((𝐶 ·𝑜 𝐴) +𝑜 𝐶))
6867adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 suc 𝐴) = ((𝐶 ·𝑜 𝐴) +𝑜 𝐶))
6966, 68eleqtrrd 2701 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝐴))
7069adantrl 751 . . . . . . . . . . . . . . 15 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐶)) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝐴))
7170adantr 481 . . . . . . . . . . . . . 14 ((((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐶)) ∧ 𝐴𝑥) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝐴))
7261, 71sseldd 3584 . . . . . . . . . . . . 13 ((((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐶)) ∧ 𝐴𝑥) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))
7372exp53 646 . . . . . . . . . . . 12 (𝐶 ∈ On → (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐶 → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))))))
7473com13 88 . . . . . . . . . . 11 (Lim 𝑥 → (𝐴 ∈ On → (𝐶 ∈ On → (∅ ∈ 𝐶 → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))))))
7574imp4c 616 . . . . . . . . . 10 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))))
7675a1dd 50 . . . . . . . . 9 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)))))
776, 10, 14, 18, 21, 47, 76tfinds3 7011 . . . . . . . 8 (𝐵 ∈ On → (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
7877com23 86 . . . . . . 7 (𝐵 ∈ On → (𝐴𝐵 → (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
7978exp4a 632 . . . . . 6 (𝐵 ∈ On → (𝐴𝐵 → ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
8079exp4a 632 . . . . 5 (𝐵 ∈ On → (𝐴𝐵 → (𝐴 ∈ On → (𝐶 ∈ On → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))))
812, 80mpdd 43 . . . 4 (𝐵 ∈ On → (𝐴𝐵 → (𝐶 ∈ On → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
8281com34 91 . . 3 (𝐵 ∈ On → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ∈ On → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
8382com24 95 . 2 (𝐵 ∈ On → (𝐶 ∈ On → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
8483imp31 448 1 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  wss 3555  c0 3891   ciun 4485  Oncon0 5682  Lim wlim 5683  suc csuc 5684  (class class class)co 6604   +𝑜 coa 7502   ·𝑜 comu 7503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-oadd 7509  df-omul 7510
This theorem is referenced by:  omord2  7592  omcan  7594  odi  7604  omass  7605  oen0  7611  oeordi  7612  oeordsuc  7619
  Copyright terms: Public domain W3C validator