Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmeas Structured version   Visualization version   GIF version

Theorem omsmeas 31576
Description: The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
omsmeas.m 𝑀 = (toOMeas‘𝑅)
omsmeas.s 𝑆 = (toCaraSiga‘𝑀)
omsmeas.o (𝜑𝑄𝑉)
omsmeas.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmeas.d (𝜑 → ∅ ∈ dom 𝑅)
omsmeas.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
omsmeas (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))

Proof of Theorem omsmeas
Dummy variables 𝑒 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmeas.o . . . . . 6 (𝜑𝑄𝑉)
2 omsmeas.r . . . . . 6 (𝜑𝑅:𝑄⟶(0[,]+∞))
3 omsf 31549 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
41, 2, 3syl2anc 586 . . . . 5 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
5 omsmeas.m . . . . . . 7 𝑀 = (toOMeas‘𝑅)
65a1i 11 . . . . . 6 (𝜑𝑀 = (toOMeas‘𝑅))
72fdmd 6517 . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝑄)
87eqcomd 2827 . . . . . . . 8 (𝜑𝑄 = dom 𝑅)
98unieqd 4841 . . . . . . 7 (𝜑 𝑄 = dom 𝑅)
109pweqd 4543 . . . . . 6 (𝜑 → 𝒫 𝑄 = 𝒫 dom 𝑅)
116, 10feq12d 6496 . . . . 5 (𝜑 → (𝑀:𝒫 𝑄⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞)))
124, 11mpbird 259 . . . 4 (𝜑𝑀:𝒫 𝑄⟶(0[,]+∞))
13 omsmeas.s . . . . 5 𝑆 = (toCaraSiga‘𝑀)
141uniexd 7462 . . . . . 6 (𝜑 𝑄 ∈ V)
1514, 12carsgcl 31557 . . . . 5 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑄)
1613, 15eqsstrid 4014 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑄)
1712, 16fssresd 6539 . . 3 (𝜑 → (𝑀𝑆):𝑆⟶(0[,]+∞))
18 omsmeas.d . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑅)
19 omsmeas.0 . . . . . . . 8 (𝜑 → (𝑅‘∅) = 0)
205, 1, 2, 18, 19oms0 31550 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
2114, 12, 200elcarsg 31560 . . . . . 6 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
2221, 13eleqtrrdi 2924 . . . . 5 (𝜑 → ∅ ∈ 𝑆)
23 fvres 6683 . . . . 5 (∅ ∈ 𝑆 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2422, 23syl 17 . . . 4 (𝜑 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2524, 20eqtrd 2856 . . 3 (𝜑 → ((𝑀𝑆)‘∅) = 0)
26 nfcv 2977 . . . . . . . 8 𝑔𝑓
27 nfcv 2977 . . . . . . . 8 𝑓𝑔
28 id 22 . . . . . . . 8 (𝑓 = 𝑔𝑓 = 𝑔)
2926, 27, 28cbvdisj 5033 . . . . . . 7 (Disj 𝑓𝑒 𝑓Disj 𝑔𝑒 𝑔)
3029anbi2i 624 . . . . . 6 ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) ↔ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
311ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄𝑉)
322ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑅:𝑄⟶(0[,]+∞))
33 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ 𝒫 𝑆)
3433elpwid 4552 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
3516ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑆 ⊆ 𝒫 𝑄)
3634, 35sstrd 3976 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ 𝒫 𝑄)
3736sselda 3966 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 ∈ 𝒫 𝑄)
3837elpwid 4552 . . . . . . . . . 10 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 𝑄)
39 simprl 769 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ≼ ω)
405, 31, 32, 38, 39omssubadd 31553 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀 𝑓𝑒 𝑓) ≤ Σ*𝑓𝑒(𝑀𝑓))
4114ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄 ∈ V)
4212ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
4320ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀‘∅) = 0)
44 uniiun 4974 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦𝑥 𝑦
4544fveq2i 6667 . . . . . . . . . . . . . . 15 (𝑀 𝑥) = (𝑀 𝑦𝑥 𝑦)
4613ad2ant1 1129 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑄𝑉)
4723ad2ant1 1129 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
48 simpl3 1189 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑥 ⊆ 𝒫 𝑄)
49 simpr 487 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦𝑥)
5048, 49sseldd 3967 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 ∈ 𝒫 𝑄)
5150elpwid 4552 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 𝑄)
52 simp2 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑥 ≼ ω)
535, 46, 47, 51, 52omssubadd 31553 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑦𝑥 𝑦) ≤ Σ*𝑦𝑥(𝑀𝑦))
5445, 53eqbrtrid 5093 . . . . . . . . . . . . . 14 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
55543adant1r 1173 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
56553adant1r 1173 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5713ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑄𝑉)
5823ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
59 simp2 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑥𝑦)
60 elpwi 4550 . . . . . . . . . . . . . . . 16 (𝑦 ∈ 𝒫 𝑄𝑦 𝑄)
61603ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑦 𝑄)
625, 57, 58, 59, 61omsmon 31551 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
63623adant1r 1173 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
64633adant1r 1173 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
65 elpwi 4550 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆𝑒𝑆)
6665ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
6766, 13sseqtrdi 4016 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ (toCaraSiga‘𝑀))
6841, 42, 43, 56, 64, 39, 67carsgclctun 31574 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ (toCaraSiga‘𝑀))
6968, 13eleqtrrdi 2924 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
70 fvres 6683 . . . . . . . . . . 11 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
71 uniiun 4974 . . . . . . . . . . . 12 𝑒 = 𝑓𝑒 𝑓
7271fveq2i 6667 . . . . . . . . . . 11 (𝑀 𝑒) = (𝑀 𝑓𝑒 𝑓)
7370, 72syl6eq 2872 . . . . . . . . . 10 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
7469, 73syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
75 nfv 1911 . . . . . . . . . 10 𝑓((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
7666sselda 3966 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓𝑆)
77 fvres 6683 . . . . . . . . . . . 12 (𝑓𝑆 → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7876, 77syl 17 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7978ralrimiva 3182 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
8075, 79esumeq2d 31291 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) = Σ*𝑓𝑒(𝑀𝑓))
8140, 74, 803brtr4d 5090 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
82 snex 5323 . . . . . . . . . . . . 13 {∅} ∈ V
8382a1i 11 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → {∅} ∈ V)
8442adantr 483 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
8584, 37ffvelrnd 6846 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑓) ∈ (0[,]+∞))
86 elsni 4577 . . . . . . . . . . . . . 14 (𝑓 ∈ {∅} → 𝑓 = ∅)
8786fveq2d 6668 . . . . . . . . . . . . 13 (𝑓 ∈ {∅} → (𝑀𝑓) = (𝑀‘∅))
8887, 43sylan9eqr 2878 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓 ∈ {∅}) → (𝑀𝑓) = 0)
8933, 83, 85, 88esumpad2 31310 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) = Σ*𝑓𝑒(𝑀𝑓))
90 neldifsnd 4719 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ¬ ∅ ∈ (𝑒 ∖ {∅}))
91 difss 4107 . . . . . . . . . . . . . 14 (𝑒 ∖ {∅}) ⊆ 𝑒
92 ssdomg 8549 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆 → ((𝑒 ∖ {∅}) ⊆ 𝑒 → (𝑒 ∖ {∅}) ≼ 𝑒))
9333, 91, 92mpisyl 21 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ 𝑒)
94 domtr 8556 . . . . . . . . . . . . 13 (((𝑒 ∖ {∅}) ≼ 𝑒𝑒 ≼ ω) → (𝑒 ∖ {∅}) ≼ ω)
9593, 39, 94syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ ω)
9667ssdifssd 4118 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ⊆ (toCaraSiga‘𝑀))
97 simprr 771 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑔𝑒 𝑔)
98 nfcv 2977 . . . . . . . . . . . . . . 15 𝑦𝑔
99 nfcv 2977 . . . . . . . . . . . . . . 15 𝑔𝑦
100 id 22 . . . . . . . . . . . . . . 15 (𝑔 = 𝑦𝑔 = 𝑦)
10198, 99, 100cbvdisj 5033 . . . . . . . . . . . . . 14 (Disj 𝑔𝑒 𝑔Disj 𝑦𝑒 𝑦)
10297, 101sylib 220 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦𝑒 𝑦)
103 disjss1 5029 . . . . . . . . . . . . 13 ((𝑒 ∖ {∅}) ⊆ 𝑒 → (Disj 𝑦𝑒 𝑦Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦))
10491, 102, 103mpsyl 68 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦)
10541, 42, 43, 56, 90, 95, 96, 104, 64carsggect 31571 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
10689, 105eqbrtrrd 5082 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
107 unidif0 5252 . . . . . . . . . . 11 (𝑒 ∖ {∅}) = 𝑒
108107fveq2i 6667 . . . . . . . . . 10 (𝑀 (𝑒 ∖ {∅})) = (𝑀 𝑒)
109106, 108breqtrdi 5099 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 𝑒))
11069, 70syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
111109, 80, 1103brtr4d 5090 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))
11281, 111jca 514 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒)))
113 iccssxr 12813 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
11417ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀𝑆):𝑆⟶(0[,]+∞))
115114, 69ffvelrnd 6846 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ (0[,]+∞))
116113, 115sseldi 3964 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ ℝ*)
117114adantr 483 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑆):𝑆⟶(0[,]+∞))
118117, 76ffvelrnd 6846 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
119118ralrimiva 3182 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
120 nfcv 2977 . . . . . . . . . . 11 𝑓𝑒
121120esumcl 31284 . . . . . . . . . 10 ((𝑒 ∈ 𝒫 𝑆 ∧ ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
12233, 119, 121syl2anc 586 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
123113, 122sseldi 3964 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*)
124 xrletri3 12541 . . . . . . . 8 ((((𝑀𝑆)‘ 𝑒) ∈ ℝ* ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
125116, 123, 124syl2anc 586 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
126112, 125mpbird 259 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
12730, 126sylan2b 595 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
128127ex 415 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑆) → ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
129128ralrimiva 3182 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
13017, 25, 1293jca 1124 . 2 (𝜑 → ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))))
13114, 12, 20, 54, 62carsgsiga 31575 . . . 4 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘ 𝑄))
13213, 131eqeltrid 2917 . . 3 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑄))
133 elrnsiga 31380 . . 3 (𝑆 ∈ (sigAlgebra‘ 𝑄) → 𝑆 ran sigAlgebra)
134 ismeas 31453 . . 3 (𝑆 ran sigAlgebra → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
135132, 133, 1343syl 18 . 2 (𝜑 → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
136130, 135mpbird 259 1 (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   cuni 4831   ciun 4911  Disj wdisj 5023   class class class wbr 5058  dom cdm 5549  ran crn 5550  cres 5551  wf 6345  cfv 6349  (class class class)co 7150  ωcom 7574  cdom 8501  0cc0 10531  +∞cpnf 10666  *cxr 10668  cle 10670  [,]cicc 12735  Σ*cesum 31281  sigAlgebracsiga 31362  measurescmeas 31449  toOMeascoms 31544  toCaraSigaccarsg 31554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-reg 9050  ax-inf2 9098  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-r1 9187  df-rank 9188  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-ordt 16768  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-ps 17804  df-tsr 17805  df-plusf 17845  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-subrg 19527  df-abv 19582  df-lmod 19630  df-scaf 19631  df-sra 19938  df-rgmod 19939  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-tmd 22674  df-tgp 22675  df-tsms 22729  df-trg 22762  df-xms 22924  df-ms 22925  df-tms 22926  df-nm 23186  df-ngp 23187  df-nrg 23189  df-nlm 23190  df-ii 23479  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-esum 31282  df-siga 31363  df-meas 31450  df-oms 31545  df-carsg 31555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator