MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsmolem Structured version   Visualization version   GIF version

Theorem omsmolem 7685
Description: Lemma for omsmo 7686. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
Assertion
Ref Expression
omsmolem (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem omsmolem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2687 . . 3 (𝑦 = ∅ → (𝑧𝑦𝑧 ∈ ∅))
2 fveq2 6153 . . . 4 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
32eleq2d 2684 . . 3 (𝑦 = ∅ → ((𝐹𝑧) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹‘∅)))
41, 3imbi12d 334 . 2 (𝑦 = ∅ → ((𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)) ↔ (𝑧 ∈ ∅ → (𝐹𝑧) ∈ (𝐹‘∅))))
5 eleq2 2687 . . 3 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
6 fveq2 6153 . . . 4 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
76eleq2d 2684 . . 3 (𝑦 = 𝑤 → ((𝐹𝑧) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
85, 7imbi12d 334 . 2 (𝑦 = 𝑤 → ((𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)) ↔ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))))
9 eleq2 2687 . . 3 (𝑦 = suc 𝑤 → (𝑧𝑦𝑧 ∈ suc 𝑤))
10 fveq2 6153 . . . 4 (𝑦 = suc 𝑤 → (𝐹𝑦) = (𝐹‘suc 𝑤))
1110eleq2d 2684 . . 3 (𝑦 = suc 𝑤 → ((𝐹𝑧) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
129, 11imbi12d 334 . 2 (𝑦 = suc 𝑤 → ((𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)) ↔ (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
13 noel 3900 . . . 4 ¬ 𝑧 ∈ ∅
1413pm2.21i 116 . . 3 (𝑧 ∈ ∅ → (𝐹𝑧) ∈ (𝐹‘∅))
1514a1i 11 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧 ∈ ∅ → (𝐹𝑧) ∈ (𝐹‘∅)))
16 vex 3192 . . . . . 6 𝑧 ∈ V
1716elsuc 5758 . . . . 5 (𝑧 ∈ suc 𝑤 ↔ (𝑧𝑤𝑧 = 𝑤))
18 fveq2 6153 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
19 suceq 5754 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤)
2019fveq2d 6157 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑤))
2118, 20eleq12d 2692 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐹𝑥) ∈ (𝐹‘suc 𝑥) ↔ (𝐹𝑤) ∈ (𝐹‘suc 𝑤)))
2221rspccva 3297 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥) ∧ 𝑤 ∈ ω) → (𝐹𝑤) ∈ (𝐹‘suc 𝑤))
2322adantll 749 . . . . . . . . 9 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → (𝐹𝑤) ∈ (𝐹‘suc 𝑤))
24 peano2b 7035 . . . . . . . . . . . . 13 (𝑤 ∈ ω ↔ suc 𝑤 ∈ ω)
25 ffvelrn 6318 . . . . . . . . . . . . 13 ((𝐹:ω⟶𝐴 ∧ suc 𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ 𝐴)
2624, 25sylan2b 492 . . . . . . . . . . . 12 ((𝐹:ω⟶𝐴𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ 𝐴)
27 ssel 3581 . . . . . . . . . . . 12 (𝐴 ⊆ On → ((𝐹‘suc 𝑤) ∈ 𝐴 → (𝐹‘suc 𝑤) ∈ On))
28 ontr1 5735 . . . . . . . . . . . . 13 ((𝐹‘suc 𝑤) ∈ On → (((𝐹𝑧) ∈ (𝐹𝑤) ∧ (𝐹𝑤) ∈ (𝐹‘suc 𝑤)) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
2928expcomd 454 . . . . . . . . . . . 12 ((𝐹‘suc 𝑤) ∈ On → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3026, 27, 29syl56 36 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑤 ∈ ω) → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))))
3130impl 649 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ 𝑤 ∈ ω) → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3231adantlr 750 . . . . . . . . 9 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3323, 32mpd 15 . . . . . . . 8 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
3433imim2d 57 . . . . . . 7 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤)) → (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3534imp 445 . . . . . 6 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
36 fveq2 6153 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
3736eleq1d 2683 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ (𝐹‘suc 𝑤) ↔ (𝐹𝑤) ∈ (𝐹‘suc 𝑤)))
3822, 37syl5ibrcom 237 . . . . . . . 8 ((∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥) ∧ 𝑤 ∈ ω) → (𝑧 = 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
3938adantll 749 . . . . . . 7 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → (𝑧 = 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
4039adantr 481 . . . . . 6 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → (𝑧 = 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
4135, 40jaod 395 . . . . 5 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → ((𝑧𝑤𝑧 = 𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
4217, 41syl5bi 232 . . . 4 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
4342exp31 629 . . 3 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑤 ∈ ω → ((𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤)) → (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))))
4443com12 32 . 2 (𝑤 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → ((𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤)) → (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))))
454, 8, 12, 15, 44finds2 7048 1 (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3559  c0 3896  Oncon0 5687  suc csuc 5689  wf 5848  cfv 5852  ωcom 7019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-om 7020
This theorem is referenced by:  omsmo  7686
  Copyright terms: Public domain W3C validator