Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmon Structured version   Visualization version   GIF version

Theorem omsmon 31455
Description: A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmon.a (𝜑𝐴𝐵)
omsmon.b (𝜑𝐵 𝑄)
Assertion
Ref Expression
omsmon (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem omsmon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmon.a . . . . . . . . . . 11 (𝜑𝐴𝐵)
21adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → 𝐴𝐵)
3 sstr2 3971 . . . . . . . . . 10 (𝐴𝐵 → (𝐵 𝑧𝐴 𝑧))
42, 3syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → (𝐵 𝑧𝐴 𝑧))
54anim1d 610 . . . . . . . 8 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → ((𝐵 𝑧𝑧 ≼ ω) → (𝐴 𝑧𝑧 ≼ ω)))
65ss2rabdv 4049 . . . . . . 7 (𝜑 → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
7 resmpt 5898 . . . . . . 7 ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
86, 7syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
9 resss 5871 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
108, 9eqsstrrdi 4019 . . . . 5 (𝜑 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
11 rnss 5802 . . . . 5 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1210, 11syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
13 oms.r . . . . . . . . . 10 (𝜑𝑅:𝑄⟶(0[,]+∞))
1413ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
15 ssrab2 4053 . . . . . . . . . . . . 13 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
16 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
1715, 16sseldi 3962 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
18 elpwi 4547 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 dom 𝑅𝑥 ⊆ dom 𝑅)
1917, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ⊆ dom 𝑅)
2013fdmd 6516 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = 𝑄)
2120ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → dom 𝑅 = 𝑄)
2219, 21sseqtrd 4004 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥𝑄)
23 simpr 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑥)
2422, 23sseldd 3965 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑄)
2514, 24ffvelrnd 6844 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
2625ralrimiva 3179 . . . . . . 7 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
27 vex 3495 . . . . . . . 8 𝑥 ∈ V
28 nfcv 2974 . . . . . . . . 9 𝑦𝑥
2928esumcl 31188 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3027, 29mpan 686 . . . . . . 7 (∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3126, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3231ralrimiva 3179 . . . . 5 (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
33 eqid 2818 . . . . . 6 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
3433rnmptss 6878 . . . . 5 (∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3612, 35xrge0infssd 30411 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ≤ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
37 oms.o . . . 4 (𝜑𝑄𝑉)
38 omsmon.b . . . . 5 (𝜑𝐵 𝑄)
391, 38sstrd 3974 . . . 4 (𝜑𝐴 𝑄)
40 omsfval 31451 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4137, 13, 39, 40syl3anc 1363 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
42 omsfval 31451 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐵 𝑄) → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4337, 13, 38, 42syl3anc 1363 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4436, 41, 433brtr4d 5089 . 2 (𝜑 → ((toOMeas‘𝑅)‘𝐴) ≤ ((toOMeas‘𝑅)‘𝐵))
45 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
4645fveq1i 6664 . 2 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
4745fveq1i 6664 . 2 (𝑀𝐵) = ((toOMeas‘𝑅)‘𝐵)
4844, 46, 473brtr4g 5091 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  {crab 3139  Vcvv 3492  wss 3933  𝒫 cpw 4535   cuni 4830   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  ωcom 7569  cdom 8495  infcinf 8893  0cc0 10525  +∞cpnf 10660   < clt 10663  cle 10664  [,]cicc 12729  Σ*cesum 31185  toOMeascoms 31448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-xadd 12496  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-tset 16572  df-ple 16573  df-ds 16575  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-ordt 16762  df-xrs 16763  df-mre 16845  df-mrc 16846  df-acs 16848  df-ps 17798  df-tsr 17799  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-cntz 18385  df-cmn 18837  df-fbas 20470  df-fg 20471  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-ntr 21556  df-nei 21634  df-cn 21763  df-haus 21851  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-tsms 22662  df-esum 31186  df-oms 31449
This theorem is referenced by:  omsmeas  31480
  Copyright terms: Public domain W3C validator