MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omssnlim Structured version   Visualization version   GIF version

Theorem omssnlim 7026
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omssnlim ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}

Proof of Theorem omssnlim
StepHypRef Expression
1 omsson 7016 . 2 ω ⊆ On
2 nnlim 7025 . . 3 (𝑥 ∈ ω → ¬ Lim 𝑥)
32rgen 2917 . 2 𝑥 ∈ ω ¬ Lim 𝑥
4 ssrab 3659 . 2 (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥))
51, 3, 4mpbir2an 954 1 ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wral 2907  {crab 2911  wss 3555  Oncon0 5682  Lim wlim 5683  ωcom 7012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-om 7013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator