Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubaddlem Structured version   Visualization version   GIF version

Theorem omssubaddlem 30166
 Description: For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubaddlem.a (𝜑𝐴 𝑄)
omssubaddlem.m (𝜑 → (𝑀𝐴) ∈ ℝ)
omssubaddlem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
omssubaddlem (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Distinct variable groups:   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑉,𝑧   𝜑,𝑥,𝑧   𝑤,𝐴,𝑥,𝑧   𝑥,𝐸   𝑥,𝑀   𝑤,𝑄   𝑤,𝑅   𝑤,𝑉
Allowed substitution hints:   𝜑(𝑤)   𝐸(𝑧,𝑤)   𝑀(𝑧,𝑤)

Proof of Theorem omssubaddlem
Dummy variables 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubaddlem.m . . . . . 6 (𝜑 → (𝑀𝐴) ∈ ℝ)
2 omssubaddlem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
32rpred 11824 . . . . . 6 (𝜑𝐸 ∈ ℝ)
41, 3readdcld 10021 . . . . 5 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ)
54rexrd 10041 . . . 4 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ*)
6 oms.o . . . . . . . . 9 (𝜑𝑄𝑉)
7 oms.r . . . . . . . . 9 (𝜑𝑅:𝑄⟶(0[,]+∞))
8 omsf 30163 . . . . . . . . 9 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
96, 7, 8syl2anc 692 . . . . . . . 8 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
10 oms.m . . . . . . . . 9 𝑀 = (toOMeas‘𝑅)
1110feq1i 5998 . . . . . . . 8 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
129, 11sylibr 224 . . . . . . 7 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
13 omssubaddlem.a . . . . . . . . 9 (𝜑𝐴 𝑄)
14 fdm 6013 . . . . . . . . . . 11 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
157, 14syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑅 = 𝑄)
1615unieqd 4417 . . . . . . . . 9 (𝜑 dom 𝑅 = 𝑄)
1713, 16sseqtr4d 3626 . . . . . . . 8 (𝜑𝐴 dom 𝑅)
18 uniexg 6915 . . . . . . . . . . 11 (𝑄𝑉 𝑄 ∈ V)
196, 18syl 17 . . . . . . . . . 10 (𝜑 𝑄 ∈ V)
2013, 19jca 554 . . . . . . . . 9 (𝜑 → (𝐴 𝑄 𝑄 ∈ V))
21 ssexg 4769 . . . . . . . . 9 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
22 elpwg 4143 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2320, 21, 223syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2417, 23mpbird 247 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 dom 𝑅)
2512, 24ffvelrnd 6321 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
26 elxrge0 12231 . . . . . . 7 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
2726simprbi 480 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) → 0 ≤ (𝑀𝐴))
2825, 27syl 17 . . . . 5 (𝜑 → 0 ≤ (𝑀𝐴))
292rpge0d 11828 . . . . 5 (𝜑 → 0 ≤ 𝐸)
301, 3, 28, 29addge0d 10555 . . . 4 (𝜑 → 0 ≤ ((𝑀𝐴) + 𝐸))
31 elxrge0 12231 . . . 4 (((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ↔ (((𝑀𝐴) + 𝐸) ∈ ℝ* ∧ 0 ≤ ((𝑀𝐴) + 𝐸)))
325, 30, 31sylanbrc 697 . . 3 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ (0[,]+∞))
3310fveq1i 6154 . . . . 5 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
34 omsfval 30161 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
356, 7, 13, 34syl3anc 1323 . . . . 5 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
3633, 35syl5req 2668 . . . 4 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
371, 2ltaddrpd 11857 . . . 4 (𝜑 → (𝑀𝐴) < ((𝑀𝐴) + 𝐸))
3836, 37eqbrtrd 4640 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸))
39 iccssxr 12206 . . . . . 6 (0[,]+∞) ⊆ ℝ*
40 xrltso 11926 . . . . . 6 < Or ℝ*
41 soss 5018 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
4239, 40, 41mp2 9 . . . . 5 < Or (0[,]+∞)
4342a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
44 omscl 30162 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
456, 7, 24, 44syl3anc 1323 . . . . 5 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
46 xrge0infss 29392 . . . . 5 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4745, 46syl 17 . . . 4 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4843, 47infglb 8348 . . 3 (𝜑 → ((((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸)) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸)))
4932, 38, 48mp2and 714 . 2 (𝜑 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸))
50 eqid 2621 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
51 esumex 29896 . . . . . . . 8 Σ*𝑤𝑥(𝑅𝑤) ∈ V
5250, 51elrnmpti 5341 . . . . . . 7 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
5352anbi1i 730 . . . . . 6 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
54 r19.41v 3082 . . . . . 6 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5553, 54bitr4i 267 . . . . 5 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5655exbii 1771 . . . 4 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
57 df-rex 2913 . . . 4 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
58 rexcom4 3214 . . . 4 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5956, 57, 583bitr4i 292 . . 3 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
60 breq1 4621 . . . . . 6 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + 𝐸) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸)))
6160biimpa 501 . . . . 5 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6261exlimiv 1855 . . . 4 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6362reximi 3006 . . 3 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6459, 63sylbi 207 . 2 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6549, 64syl 17 1 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908  {crab 2911  Vcvv 3189   ⊆ wss 3559  𝒫 cpw 4135  ∪ cuni 4407   class class class wbr 4618   ↦ cmpt 4678   Or wor 4999  dom cdm 5079  ran crn 5080  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  ωcom 7019   ≼ cdom 7905  infcinf 8299  ℝcr 9887  0cc0 9888   + caddc 9891  +∞cpnf 10023  ℝ*cxr 10025   < clt 10026   ≤ cle 10027  ℝ+crp 11784  [,]cicc 12128  Σ*cesum 29894  toOMeascoms 30158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xadd 11899  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-tset 15892  df-ple 15893  df-ds 15896  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-ordt 16093  df-xrs 16094  df-mre 16178  df-mrc 16179  df-acs 16181  df-ps 17132  df-tsr 17133  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-cntz 17682  df-cmn 18127  df-fbas 19675  df-fg 19676  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-ntr 20747  df-nei 20825  df-cn 20954  df-haus 21042  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-tsms 21853  df-esum 29895  df-oms 30159 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator