Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubaddlem Structured version   Visualization version   GIF version

Theorem omssubaddlem 30166
Description: For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubaddlem.a (𝜑𝐴 𝑄)
omssubaddlem.m (𝜑 → (𝑀𝐴) ∈ ℝ)
omssubaddlem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
omssubaddlem (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Distinct variable groups:   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑉,𝑧   𝜑,𝑥,𝑧   𝑤,𝐴,𝑥,𝑧   𝑥,𝐸   𝑥,𝑀   𝑤,𝑄   𝑤,𝑅   𝑤,𝑉
Allowed substitution hints:   𝜑(𝑤)   𝐸(𝑧,𝑤)   𝑀(𝑧,𝑤)

Proof of Theorem omssubaddlem
Dummy variables 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubaddlem.m . . . . . 6 (𝜑 → (𝑀𝐴) ∈ ℝ)
2 omssubaddlem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
32rpred 11824 . . . . . 6 (𝜑𝐸 ∈ ℝ)
41, 3readdcld 10021 . . . . 5 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ)
54rexrd 10041 . . . 4 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ*)
6 oms.o . . . . . . . . 9 (𝜑𝑄𝑉)
7 oms.r . . . . . . . . 9 (𝜑𝑅:𝑄⟶(0[,]+∞))
8 omsf 30163 . . . . . . . . 9 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
96, 7, 8syl2anc 692 . . . . . . . 8 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
10 oms.m . . . . . . . . 9 𝑀 = (toOMeas‘𝑅)
1110feq1i 5998 . . . . . . . 8 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
129, 11sylibr 224 . . . . . . 7 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
13 omssubaddlem.a . . . . . . . . 9 (𝜑𝐴 𝑄)
14 fdm 6013 . . . . . . . . . . 11 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
157, 14syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑅 = 𝑄)
1615unieqd 4417 . . . . . . . . 9 (𝜑 dom 𝑅 = 𝑄)
1713, 16sseqtr4d 3626 . . . . . . . 8 (𝜑𝐴 dom 𝑅)
18 uniexg 6915 . . . . . . . . . . 11 (𝑄𝑉 𝑄 ∈ V)
196, 18syl 17 . . . . . . . . . 10 (𝜑 𝑄 ∈ V)
2013, 19jca 554 . . . . . . . . 9 (𝜑 → (𝐴 𝑄 𝑄 ∈ V))
21 ssexg 4769 . . . . . . . . 9 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
22 elpwg 4143 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2320, 21, 223syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2417, 23mpbird 247 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 dom 𝑅)
2512, 24ffvelrnd 6321 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
26 elxrge0 12231 . . . . . . 7 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
2726simprbi 480 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) → 0 ≤ (𝑀𝐴))
2825, 27syl 17 . . . . 5 (𝜑 → 0 ≤ (𝑀𝐴))
292rpge0d 11828 . . . . 5 (𝜑 → 0 ≤ 𝐸)
301, 3, 28, 29addge0d 10555 . . . 4 (𝜑 → 0 ≤ ((𝑀𝐴) + 𝐸))
31 elxrge0 12231 . . . 4 (((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ↔ (((𝑀𝐴) + 𝐸) ∈ ℝ* ∧ 0 ≤ ((𝑀𝐴) + 𝐸)))
325, 30, 31sylanbrc 697 . . 3 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ (0[,]+∞))
3310fveq1i 6154 . . . . 5 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
34 omsfval 30161 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
356, 7, 13, 34syl3anc 1323 . . . . 5 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
3633, 35syl5req 2668 . . . 4 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
371, 2ltaddrpd 11857 . . . 4 (𝜑 → (𝑀𝐴) < ((𝑀𝐴) + 𝐸))
3836, 37eqbrtrd 4640 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸))
39 iccssxr 12206 . . . . . 6 (0[,]+∞) ⊆ ℝ*
40 xrltso 11926 . . . . . 6 < Or ℝ*
41 soss 5018 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
4239, 40, 41mp2 9 . . . . 5 < Or (0[,]+∞)
4342a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
44 omscl 30162 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
456, 7, 24, 44syl3anc 1323 . . . . 5 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
46 xrge0infss 29392 . . . . 5 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4745, 46syl 17 . . . 4 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4843, 47infglb 8348 . . 3 (𝜑 → ((((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸)) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸)))
4932, 38, 48mp2and 714 . 2 (𝜑 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸))
50 eqid 2621 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
51 esumex 29896 . . . . . . . 8 Σ*𝑤𝑥(𝑅𝑤) ∈ V
5250, 51elrnmpti 5341 . . . . . . 7 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
5352anbi1i 730 . . . . . 6 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
54 r19.41v 3082 . . . . . 6 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5553, 54bitr4i 267 . . . . 5 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5655exbii 1771 . . . 4 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
57 df-rex 2913 . . . 4 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
58 rexcom4 3214 . . . 4 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5956, 57, 583bitr4i 292 . . 3 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
60 breq1 4621 . . . . . 6 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + 𝐸) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸)))
6160biimpa 501 . . . . 5 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6261exlimiv 1855 . . . 4 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6362reximi 3006 . . 3 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6459, 63sylbi 207 . 2 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6549, 64syl 17 1 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  wss 3559  𝒫 cpw 4135   cuni 4407   class class class wbr 4618  cmpt 4678   Or wor 4999  dom cdm 5079  ran crn 5080  wf 5848  cfv 5852  (class class class)co 6610  ωcom 7019  cdom 7905  infcinf 8299  cr 9887  0cc0 9888   + caddc 9891  +∞cpnf 10023  *cxr 10025   < clt 10026  cle 10027  +crp 11784  [,]cicc 12128  Σ*cesum 29894  toOMeascoms 30158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xadd 11899  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-tset 15892  df-ple 15893  df-ds 15896  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-ordt 16093  df-xrs 16094  df-mre 16178  df-mrc 16179  df-acs 16181  df-ps 17132  df-tsr 17133  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-cntz 17682  df-cmn 18127  df-fbas 19675  df-fg 19676  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-ntr 20747  df-nei 20825  df-cn 20954  df-haus 21042  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-tsms 21853  df-esum 29895  df-oms 30159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator