MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onasuc Structured version   Visualization version   GIF version

Theorem onasuc 7593
Description: Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Note that this version of oasuc 7589 does not need Replacement.) (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
onasuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))

Proof of Theorem onasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frsuc 7517 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵)))
21adantl 482 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵)))
3 peano2 7071 . . . . 5 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
43adantl 482 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
5 fvres 6194 . . . 4 (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
64, 5syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
7 fvres 6194 . . . . 5 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
87adantl 482 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
98fveq2d 6182 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
102, 6, 93eqtr3d 2662 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
11 nnon 7056 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ On)
12 suceloni 6998 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
1311, 12syl 17 . . 3 (𝐵 ∈ ω → suc 𝐵 ∈ On)
14 oav 7576 . . 3 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
1513, 14sylan2 491 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
16 ovex 6663 . . . 4 (𝐴 +𝑜 𝐵) ∈ V
17 suceq 5778 . . . . 5 (𝑥 = (𝐴 +𝑜 𝐵) → suc 𝑥 = suc (𝐴 +𝑜 𝐵))
18 eqid 2620 . . . . 5 (𝑥 ∈ V ↦ suc 𝑥) = (𝑥 ∈ V ↦ suc 𝑥)
1916sucex 6996 . . . . 5 suc (𝐴 +𝑜 𝐵) ∈ V
2017, 18, 19fvmpt 6269 . . . 4 ((𝐴 +𝑜 𝐵) ∈ V → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵))
2116, 20ax-mp 5 . . 3 ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵)
22 oav 7576 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
2311, 22sylan2 491 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
2423fveq2d 6182 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +𝑜 𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
2521, 24syl5eqr 2668 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc (𝐴 +𝑜 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
2610, 15, 253eqtr4d 2664 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  cmpt 4720  cres 5106  Oncon0 5711  suc csuc 5713  cfv 5876  (class class class)co 6635  ωcom 7050  reccrdg 7490   +𝑜 coa 7542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549
This theorem is referenced by:  oa1suc  7596  nnasuc  7671  rdgeqoa  33189
  Copyright terms: Public domain W3C validator