MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomon Structured version   Visualization version   GIF version

Theorem ondomon 9984
Description: The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 9007. (Contributed by NM, 7-Nov-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ondomon (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem ondomon
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6215 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3497 . . . . . . . . . . . . 13 𝑧 ∈ V
3 onelss 6232 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 409 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8554 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 514 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domtr 8561 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 618 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 470 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 582 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 422 . . . . . . . . 9 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . 8 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 413 . . . . . . 7 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 5068 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3679 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 5068 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3679 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 298 . . . . . 6 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 409 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1793 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 5173 . . . 4 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 233 . . 3 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 4055 . . 3 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7497 . . 3 Ord On
26 trssord 6207 . . 3 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1457 . 2 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 elex 3512 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
29 canth2g 8670 . . . . . . . . 9 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
30 domsdomtr 8651 . . . . . . . . 9 ((𝑥𝐴𝐴 ≺ 𝒫 𝐴) → 𝑥 ≺ 𝒫 𝐴)
3129, 30sylan2 594 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ V) → 𝑥 ≺ 𝒫 𝐴)
3231expcom 416 . . . . . . 7 (𝐴 ∈ V → (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3332ralrimivw 3183 . . . . . 6 (𝐴 ∈ V → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3428, 33syl 17 . . . . 5 (𝐴𝑉 → ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
35 ss2rab 4046 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ↔ ∀𝑥 ∈ On (𝑥𝐴𝑥 ≺ 𝒫 𝐴))
3634, 35sylibr 236 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
37 pwexg 5278 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
38 numth3 9891 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ dom card)
39 cardval2 9419 . . . . . 6 (𝒫 𝐴 ∈ dom card → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
4037, 38, 393syl 18 . . . . 5 (𝐴𝑉 → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴})
41 fvex 6682 . . . . 5 (card‘𝒫 𝐴) ∈ V
4240, 41eqeltrrdi 2922 . . . 4 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V)
43 ssexg 5226 . . . 4 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
4436, 42, 43syl2anc 586 . . 3 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
45 elong 6198 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4644, 45syl 17 . 2 (𝐴𝑉 → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
4727, 46mpbiri 260 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  wss 3935  𝒫 cpw 4538   class class class wbr 5065  Tr wtr 5171  dom cdm 5554  Ord word 6189  Oncon0 6190  cfv 6354  cdom 8506  csdm 8507  cardccrd 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-ac2 9884
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-wrecs 7946  df-recs 8007  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-card 9367  df-ac 9541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator