Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onego Structured version   Visualization version   GIF version

Theorem onego 43818
Description: The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.)
Assertion
Ref Expression
onego (𝐴 ∈ Odd → -𝐴 ∈ Odd )

Proof of Theorem onego
StepHypRef Expression
1 znegcl 12020 . . . 4 (𝐴 ∈ ℤ → -𝐴 ∈ ℤ)
21adantr 483 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → -𝐴 ∈ ℤ)
3 znegcl 12020 . . . . . 6 (((𝐴 − 1) / 2) ∈ ℤ → -((𝐴 − 1) / 2) ∈ ℤ)
43adantl 484 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → -((𝐴 − 1) / 2) ∈ ℤ)
5 peano2zm 12028 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
65zcnd 12091 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ)
76adantr 483 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (𝐴 − 1) ∈ ℂ)
8 2cnd 11718 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
9 2ne0 11744 . . . . . . 7 2 ≠ 0
109a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → 2 ≠ 0)
11 divneg 11335 . . . . . . 7 (((𝐴 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝐴 − 1) / 2) = (-(𝐴 − 1) / 2))
1211eleq1d 2900 . . . . . 6 (((𝐴 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-((𝐴 − 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
137, 8, 10, 12syl3anc 1367 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-((𝐴 − 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
144, 13mpbid 234 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-(𝐴 − 1) / 2) ∈ ℤ)
15 zcn 11989 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
16 1cnd 10639 . . . . . . . 8 (𝐴 ∈ ℤ → 1 ∈ ℂ)
17 negsubdi 10945 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1))
1817eqcomd 2830 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (-𝐴 + 1) = -(𝐴 − 1))
1915, 16, 18syl2anc 586 . . . . . . 7 (𝐴 ∈ ℤ → (-𝐴 + 1) = -(𝐴 − 1))
2019oveq1d 7174 . . . . . 6 (𝐴 ∈ ℤ → ((-𝐴 + 1) / 2) = (-(𝐴 − 1) / 2))
2120eleq1d 2900 . . . . 5 (𝐴 ∈ ℤ → (((-𝐴 + 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
2221adantr 483 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (((-𝐴 + 1) / 2) ∈ ℤ ↔ (-(𝐴 − 1) / 2) ∈ ℤ))
2314, 22mpbird 259 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → ((-𝐴 + 1) / 2) ∈ ℤ)
242, 23jca 514 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ) → (-𝐴 ∈ ℤ ∧ ((-𝐴 + 1) / 2) ∈ ℤ))
25 isodd2 43807 . 2 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℤ))
26 isodd 43801 . 2 (-𝐴 ∈ Odd ↔ (-𝐴 ∈ ℤ ∧ ((-𝐴 + 1) / 2) ∈ ℤ))
2724, 25, 263imtr4i 294 1 (𝐴 ∈ Odd → -𝐴 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543  cmin 10873  -cneg 10874   / cdiv 11300  2c2 11695  cz 11984   Odd codd 43797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-odd 43799
This theorem is referenced by:  omoeALTV  43857  emoo  43876
  Copyright terms: Public domain W3C validator