MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onesuc Structured version   Visualization version   GIF version

Theorem onesuc 7570
Description: Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onesuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝑜 suc 𝐵) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))

Proof of Theorem onesuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limom 7042 . 2 Lim ω
2 frsuc 7492 . . 3 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜) ↾ ω)‘𝐵)))
3 peano2 7048 . . . 4 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
4 fvres 6174 . . . 4 (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵))
53, 4syl 17 . . 3 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵))
6 fvres 6174 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
76fveq2d 6162 . . 3 (𝐵 ∈ ω → ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜) ↾ ω)‘𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
82, 5, 73eqtr3d 2663 . 2 (𝐵 ∈ ω → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
91, 8oesuclem 7565 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝑜 suc 𝐵) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  cmpt 4683  cres 5086  Oncon0 5692  suc csuc 5694  cfv 5857  (class class class)co 6615  ωcom 7027  reccrdg 7465  1𝑜c1o 7513   ·𝑜 comu 7518  𝑜 coe 7519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-omul 7525  df-oexp 7526
This theorem is referenced by:  oe1  7584  nnesuc  7648
  Copyright terms: Public domain W3C validator