MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfin2 Structured version   Visualization version   GIF version

Theorem onfin2 8097
Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
onfin2 ω = (On ∩ Fin)

Proof of Theorem onfin2
StepHypRef Expression
1 nnon 7019 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onfin 8096 . . . . . 6 (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω))
32biimprcd 240 . . . . 5 (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin))
41, 3jcai 558 . . . 4 (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
52biimpa 501 . . . 4 ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω)
64, 5impbii 199 . . 3 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
7 elin 3779 . . 3 (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
86, 7bitr4i 267 . 2 (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin))
98eqriv 2623 1 ω = (On ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1992  cin 3559  Oncon0 5685  ωcom 7013  Fincfn 7900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-om 7014  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904
This theorem is referenced by:  nnfi  8098  cantnfcl  8509  ackbij1lem9  8995  ackbij1lem10  8996  ackbij1b  9006  sdom2en01  9069  fin23lem26  9092  fin56  9160  fin1a2lem9  9175  fzfi  12708  fz1isolem  13180  ackbijnn  14480  hauspwdom  21209
  Copyright terms: Public domain W3C validator