Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALT Structured version   Visualization version   GIF version

Theorem onfrALT 40873
Description: The membership relation is foundational on the class of ordinal numbers. onfrALT 40873 is an alternate proof of onfr 6223. onfrALTVD 41215 is the Virtual Deduction proof from which onfrALT 40873 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6223 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 41215. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALT E Fr On

Proof of Theorem onfrALT
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5533 . 2 ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
2 simpr 487 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
3 n0 4308 . . . 4 (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎)
4 onfrALTlem1 40872 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
54expd 418 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
6 onfrALTlem2 40870 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
76expd 418 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
8 pm2.61 194 . . . . . 6 (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
95, 7, 8syl6c 70 . . . . 5 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
109exlimdv 1928 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
113, 10syl5bi 244 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅))
122, 11mpd 15 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
131, 12mpgbir 1794 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1531  wex 1774  wne 3014  wrex 3137  cin 3933  wss 3934  c0 4289   E cep 5457   Fr wfr 5504  Oncon0 6184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-13 2384  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-on 6188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator