Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALT Structured version   Visualization version   GIF version

Theorem onfrALT 38590
Description: The epsilon relation is foundational on the class of ordinal numbers. onfrALT 38590 is an alternate proof of onfr 5761. onfrALTVD 38953 is the Virtual Deduction proof from which onfrALT 38590 is derived. The Virtual Deduction proof mirrors the working proof of onfr 5761 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 38953. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALT E Fr On

Proof of Theorem onfrALT
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5097 . 2 ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
2 simpr 477 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
3 n0 3929 . . . 4 (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎)
4 onfrALTlem1 38589 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
54expd 452 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
6 onfrALTlem2 38587 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
76expd 452 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
8 pm2.61 183 . . . . . 6 (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
95, 7, 8syl6c 70 . . . . 5 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
109exlimdv 1860 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
113, 10syl5bi 232 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅))
122, 11mpd 15 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
131, 12mpgbir 1725 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1482  wex 1703  wne 2793  wrex 2912  cin 3571  wss 3572  c0 3913   E cep 5026   Fr wfr 5068  Oncon0 5721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-tr 4751  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-ord 5724  df-on 5725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator