Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTVD Structured version   Visualization version   GIF version

Theorem onfrALTVD 41102
Description: Virtual deduction proof of onfrALT 40760. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 40760 is onfrALTVD 41102 without virtual deductions and was automatically derived from onfrALTVD 41102.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
3:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
4:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    ((𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
5:: ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
6:5,4,3: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    𝑦𝑎(𝑎𝑦) = ∅   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
8:7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
10:: (𝑎 ≠ ∅ ↔ ∃𝑥𝑥𝑎)
11:9,10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
12:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 On ∧ 𝑎 ≠ ∅)   )
13:12: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎    )
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦 𝑎(𝑎𝑦) = ∅   )
15:14: ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
16:15: 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 𝑎(𝑎𝑦) = ∅)
qed:16: E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTVD E Fr On

Proof of Theorem onfrALTVD
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 40785 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
2 simpr 485 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
31, 2e1a 40838 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ≠ ∅   )
4 exmid 888 . . . . . . . . . 10 ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
5 onfrALTlem1VD 41101 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
65in2an 40819 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   ((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
7 onfrALTlem2VD 41100 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
87in2an 40819 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
9 pm2.61 193 . . . . . . . . . . 11 (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
109a1i 11 . . . . . . . . . 10 (((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅) → (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
114, 6, 8, 10e022 40852 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
1211in2 40816 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
1312gen11 40827 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
14 19.23v 1934 . . . . . . . 8 (∀𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) ↔ (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
1514biimpi 217 . . . . . . 7 (∀𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) → (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
1613, 15e1a 40838 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
17 n0 4307 . . . . . 6 (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎)
18 imbi1 349 . . . . . . 7 ((𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎) → ((𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) ↔ (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
1918biimprcd 251 . . . . . 6 ((∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎) → (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
2016, 17, 19e10 40905 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
21 pm2.27 42 . . . . 5 (𝑎 ≠ ∅ → ((𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
223, 20, 21e11 40899 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
2322in1 40782 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
2423ax-gen 1787 . 2 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
25 dfepfr 5533 . . 3 ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
2625biimpri 229 . 2 (∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅) → E Fr On)
2724, 26e0a 40983 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  wal 1526   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  cin 3932  wss 3933  c0 4288   E cep 5457   Fr wfr 5504  Oncon0 6184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2381  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-on 6188  df-vd1 40781  df-vd2 40789  df-vd3 40801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator