Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem3 Structured version   Visualization version   GIF version

Theorem onfrALTlem3 38280
Description: Lemma for onfrALT 38285. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑦,𝑎   𝑥,𝑦

Proof of Theorem onfrALTlem3
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ssid 3609 . . 3 (𝑎𝑥) ⊆ (𝑎𝑥)
2 simpr 477 . . . . 5 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ¬ (𝑎𝑥) = ∅)
32a1i 11 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ¬ (𝑎𝑥) = ∅))
4 df-ne 2791 . . . 4 ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥) = ∅)
53, 4syl6ibr 242 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → (𝑎𝑥) ≠ ∅))
6 pm3.2 463 . . 3 ((𝑎𝑥) ⊆ (𝑎𝑥) → ((𝑎𝑥) ≠ ∅ → ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)))
71, 5, 6mpsylsyld 69 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)))
8 vex 3193 . . . . 5 𝑥 ∈ V
98inex2 4770 . . . 4 (𝑎𝑥) ∈ V
10 inss2 3818 . . . . . . 7 (𝑎𝑥) ⊆ 𝑥
11 simpl 473 . . . . . . . . . 10 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On)
12 simpl 473 . . . . . . . . . 10 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥𝑎)
13 ssel 3582 . . . . . . . . . 10 (𝑎 ⊆ On → (𝑥𝑎𝑥 ∈ On))
1411, 12, 13syl2im 40 . . . . . . . . 9 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥 ∈ On))
15 eloni 5702 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
1614, 15syl6 35 . . . . . . . 8 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → Ord 𝑥))
17 ordwe 5705 . . . . . . . 8 (Ord 𝑥 → E We 𝑥)
1816, 17syl6 35 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E We 𝑥))
19 wess 5071 . . . . . . 7 ((𝑎𝑥) ⊆ 𝑥 → ( E We 𝑥 → E We (𝑎𝑥)))
2010, 18, 19mpsylsyld 69 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E We (𝑎𝑥)))
21 wefr 5074 . . . . . 6 ( E We (𝑎𝑥) → E Fr (𝑎𝑥))
2220, 21syl6 35 . . . . 5 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → E Fr (𝑎𝑥)))
23 dfepfr 5069 . . . . 5 ( E Fr (𝑎𝑥) ↔ ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅))
2422, 23syl6ib 241 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
25 spsbc 3435 . . . 4 ((𝑎𝑥) ∈ V → (∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) → [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
269, 24, 25mpsylsyld 69 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
27 onfrALTlem5 38278 . . 3 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
2826, 27syl6ib 241 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)))
297, 28mpdd 43 1 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478   = wceq 1480  wcel 1987  wne 2790  wrex 2909  Vcvv 3190  [wsbc 3422  cin 3559  wss 3560  c0 3897   E cep 4993   Fr wfr 5040   We wwe 5042  Ord word 5691  Oncon0 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-tr 4723  df-eprel 4995  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-ord 5695  df-on 5696
This theorem is referenced by:  onfrALTlem2  38282
  Copyright terms: Public domain W3C validator