Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5 Structured version   Visualization version   GIF version

Theorem onfrALTlem5 40866
Description: Lemma for onfrALT 40873. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑎,𝑏,𝑦   𝑥,𝑏,𝑦

Proof of Theorem onfrALTlem5
StepHypRef Expression
1 vex 3496 . . . 4 𝑎 ∈ V
21inex1 5212 . . 3 (𝑎𝑥) ∈ V
3 sbcimg 3818 . . 3 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅)))
42, 3ax-mp 5 . 2 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅))
5 sbcan 3819 . . . 4 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
6 sseq1 3990 . . . . . 6 (𝑏 = (𝑎𝑥) → (𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥)))
72, 6sbcie 3810 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
8 df-ne 3015 . . . . . . 7 (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
98sbcbii 3827 . . . . . 6 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
10 sbcng 3817 . . . . . . . 8 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅ ↔ ¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅))
1110bicomd 225 . . . . . . 7 ((𝑎𝑥) ∈ V → (¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅))
122, 11ax-mp 5 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
13 eqsbc3 3815 . . . . . . . 8 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅))
142, 13ax-mp 5 . . . . . . 7 ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅)
1514necon3bbii 3061 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
169, 12, 153bitr2i 301 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (𝑎𝑥) ≠ ∅)
177, 16anbi12i 628 . . . 4 (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
185, 17bitri 277 . . 3 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
19 df-rex 3142 . . . . 5 (∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
2019sbcbii 3827 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
21 sbcan 3819 . . . . . . 7 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
22 sbcel2gv 3839 . . . . . . . . 9 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥)))
232, 22ax-mp 5 . . . . . . . 8 ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥))
24 sbceqg 4359 . . . . . . . . . 10 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅))
252, 24ax-mp 5 . . . . . . . . 9 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅)
26 csbin 4389 . . . . . . . . . . 11 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
27 csbvarg 4381 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥))
282, 27ax-mp 5 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
29 csbconstg 3900 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑦 = 𝑦)
302, 29ax-mp 5 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏𝑦 = 𝑦
3128, 30ineq12i 4185 . . . . . . . . . . 11 ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
3226, 31eqtri 2842 . . . . . . . . . 10 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
33 csb0 4357 . . . . . . . . . 10 (𝑎𝑥) / 𝑏∅ = ∅
3432, 33eqeq12i 2834 . . . . . . . . 9 ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
3525, 34bitri 277 . . . . . . . 8 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
3623, 35anbi12i 628 . . . . . . 7 (([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
3721, 36bitri 277 . . . . . 6 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
3837exbii 1842 . . . . 5 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
39 sbcex2 3832 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅))
40 df-rex 3142 . . . . 5 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
4138, 39, 403bitr4i 305 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
4220, 41bitri 277 . . 3 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
4318, 42imbi12i 353 . 2 (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
444, 43bitri 277 1 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1531  wex 1774  wcel 2108  wne 3014  wrex 3137  Vcvv 3493  [wsbc 3770  csb 3881  cin 3933  wss 3934  c0 4289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-in 3941  df-ss 3950  df-nul 4290
This theorem is referenced by:  onfrALTlem3  40868  onfrALTlem3VD  41211
  Copyright terms: Public domain W3C validator