Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5VD Structured version   Visualization version   GIF version

Theorem onfrALTlem5VD 38601
Description: Virtual deduction proof of onfrALTlem5 38236. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 38236 is onfrALTlem5VD 38601 without virtual deductions and was automatically derived from onfrALTlem5VD 38601.
1:: 𝑎 ∈ V
2:1: (𝑎𝑥) ∈ V
3:2: ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 𝑥) = ∅)
4:3: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎𝑥) = ∅)
5:: ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥 ) = ∅)
6:4,5: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
7:2: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
8:: (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
9:8: 𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
10:2,9: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
11:7,10: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)
12:6,11: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎𝑥) ≠ ∅)
13:2: ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥 ) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
14:12,13: (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎 𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎 𝑥) ∧ (𝑎𝑥) ≠ ∅))
15:2: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
16:15,14: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
17:2: (𝑎𝑥) / 𝑏(𝑏𝑦) = ( (𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
18:2: (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
19:2: (𝑎𝑥) / 𝑏𝑦 = 𝑦
20:18,19: ((𝑎𝑥) / 𝑏𝑏(𝑎 𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
21:17,20: (𝑎𝑥) / 𝑏(𝑏𝑦) = (( 𝑎𝑥) ∩ 𝑦)
22:2: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏 ∅)
23:2: (𝑎𝑥) / 𝑏∅ = ∅
24:21,23: ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
25:22,24: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
26:2: ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 (𝑎𝑥))
27:25,26: (([(𝑎𝑥) / 𝑏]𝑦𝑏[ (𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ (( 𝑎𝑥) ∩ 𝑦) = ∅))
28:2: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
29:27,28: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
30:29: 𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
31:30: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅))
32:: (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅ ))
33:31,32: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
34:2: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ ( 𝑏𝑦) = ∅))
35:33,34: ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅)
36:: (∃𝑦𝑏(𝑏𝑦) = ∅ ↔ ∃𝑦 (𝑦𝑏 ∧ (𝑏𝑦) = ∅))
37:36: 𝑏(∃𝑦𝑏(𝑏𝑦) = ∅ ↔ 𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
38:2,37: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
39:35,38: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
40:16,39: (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
41:2: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ ([(𝑎 𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏𝑦) = ∅))
qed:40,41: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥 )((𝑎𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5VD ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Distinct variable groups:   𝑎,𝑏,𝑦   𝑥,𝑏,𝑦

Proof of Theorem onfrALTlem5VD
StepHypRef Expression
1 vex 3189 . . . 4 𝑎 ∈ V
21inex1 4759 . . 3 (𝑎𝑥) ∈ V
3 sbcimg 3459 . . 3 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅)))
42, 3e0a 38478 . 2 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅))
5 sbcangOLD 38218 . . . . 5 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)))
62, 5e0a 38478 . . . 4 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
7 sseq1 3605 . . . . . . 7 (𝑏 = (𝑎𝑥) → (𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥)))
87sbcieg 3450 . . . . . 6 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥)))
92, 8e0a 38478 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
10 sbcng 3458 . . . . . . . . 9 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅ ↔ ¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅))
1110bicomd 213 . . . . . . . 8 ((𝑎𝑥) ∈ V → (¬ [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅))
122, 11e0a 38478 . . . . . . 7 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
13 df-ne 2791 . . . . . . . . 9 (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
1413ax-gen 1719 . . . . . . . 8 𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
15 sbcbi 38228 . . . . . . . 8 ((𝑎𝑥) ∈ V → (∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) → ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)))
162, 14, 15e00 38474 . . . . . . 7 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏] ¬ 𝑏 = ∅)
1712, 16bitr4i 267 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)
18 eqsbc3 3457 . . . . . . . . 9 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅))
192, 18e0a 38478 . . . . . . . 8 ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) = ∅)
2019notbii 310 . . . . . . 7 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎𝑥) = ∅)
21 df-ne 2791 . . . . . . 7 ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥) = ∅)
2220, 21bitr4i 267 . . . . . 6 [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
2317, 22bitr3i 266 . . . . 5 ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (𝑎𝑥) ≠ ∅)
249, 23anbi12i 732 . . . 4 (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
256, 24bitri 264 . . 3 ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
26 df-rex 2913 . . . . . 6 (∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
2726ax-gen 1719 . . . . 5 𝑏(∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
28 sbcbi 38228 . . . . 5 ((𝑎𝑥) ∈ V → (∀𝑏(∃𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅)) → ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))))
292, 27, 28e00 38474 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
30 sbcexgOLD 38232 . . . . . . 7 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅)))
3130bicomd 213 . . . . . 6 ((𝑎𝑥) ∈ V → (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅)))
322, 31e0a 38478 . . . . 5 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
33 sbcangOLD 38218 . . . . . . . . . 10 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅)))
342, 33e0a 38478 . . . . . . . . 9 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
35 sbcel2gv 3478 . . . . . . . . . . 11 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥)))
362, 35e0a 38478 . . . . . . . . . 10 ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 ∈ (𝑎𝑥))
37 sbceqg 3956 . . . . . . . . . . . 12 ((𝑎𝑥) ∈ V → ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅))
382, 37e0a 38478 . . . . . . . . . . 11 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅)
39 csbingOLD 38534 . . . . . . . . . . . . . 14 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦))
402, 39e0a 38478 . . . . . . . . . . . . 13 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
41 csbvarg 3975 . . . . . . . . . . . . . . 15 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥))
422, 41e0a 38478 . . . . . . . . . . . . . 14 (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
43 csbconstg 3527 . . . . . . . . . . . . . . 15 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏𝑦 = 𝑦)
442, 43e0a 38478 . . . . . . . . . . . . . 14 (𝑎𝑥) / 𝑏𝑦 = 𝑦
4542, 44ineq12i 3790 . . . . . . . . . . . . 13 ((𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
4640, 45eqtri 2643 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏(𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
47 csbconstg 3527 . . . . . . . . . . . . 13 ((𝑎𝑥) ∈ V → (𝑎𝑥) / 𝑏∅ = ∅)
482, 47e0a 38478 . . . . . . . . . . . 12 (𝑎𝑥) / 𝑏∅ = ∅
4946, 48eqeq12i 2635 . . . . . . . . . . 11 ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
5038, 49bitri 264 . . . . . . . . . 10 ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
5136, 50anbi12i 732 . . . . . . . . 9 (([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
5234, 51bitri 264 . . . . . . . 8 ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
5352ax-gen 1719 . . . . . . 7 𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
54 exbi 1770 . . . . . . 7 (∀𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)) → (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)))
5553, 54e0a 38478 . . . . . 6 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
56 df-rex 2913 . . . . . 6 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
5755, 56bitr4i 267 . . . . 5 (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
5832, 57bitr3i 266 . . . 4 ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
5929, 58bitri 264 . . 3 ([(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
6025, 59imbi12i 340 . 2 (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
614, 60bitri 264 1 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  [wsbc 3417  csb 3514  cin 3554  wss 3555  c0 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-in 3562  df-ss 3569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator