Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfununi Structured version   Visualization version   GIF version

Theorem onfununi 7483
 Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
onfununi.1 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
onfununi.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
Assertion
Ref Expression
onfununi ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onfununi
StepHypRef Expression
1 ssorduni 7027 . . . . . . . . . 10 (𝑆 ⊆ On → Ord 𝑆)
21ad2antrr 762 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Ord 𝑆)
3 nelneq 2754 . . . . . . . . . . . . . . . 16 ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → ¬ 𝑥 = 𝑆)
4 elssuni 4499 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑆𝑥 𝑆)
54adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → 𝑥 𝑆)
6 ssel 3630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ⊆ On → (𝑥𝑆𝑥 ∈ On))
7 eloni 5771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → Ord 𝑥)
86, 7syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ⊆ On → (𝑥𝑆 → Ord 𝑥))
98imp 444 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ⊆ On ∧ 𝑥𝑆) → Ord 𝑥)
10 ordsseleq 5790 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑥 ∧ Ord 𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
119, 1, 10syl2an 493 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ On ∧ 𝑥𝑆) ∧ 𝑆 ⊆ On) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
1211anabss1 872 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
135, 12mpbid 222 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆𝑥 = 𝑆))
1413ord 391 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 𝑆𝑥 = 𝑆))
1514con1d 139 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 = 𝑆𝑥 𝑆))
163, 15syl5 34 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ On ∧ 𝑥𝑆) → ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → 𝑥 𝑆))
1716exp4b 631 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → (𝑥𝑆 → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆))))
1817pm2.43d 53 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆)))
1918com23 86 . . . . . . . . . . . 12 (𝑆 ⊆ On → (¬ 𝑆𝑆 → (𝑥𝑆𝑥 𝑆)))
2019imp 444 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → (𝑥𝑆𝑥 𝑆))
2120ssrdv 3642 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
22 ssn0 4009 . . . . . . . . . 10 ((𝑆 𝑆𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2321, 22sylan 487 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2421unissd 4494 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
25 orduniss 5859 . . . . . . . . . . . . 13 (Ord 𝑆 𝑆 𝑆)
261, 25syl 17 . . . . . . . . . . . 12 (𝑆 ⊆ On → 𝑆 𝑆)
2726adantr 480 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
2824, 27eqssd 3653 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 = 𝑆)
2928adantr 480 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 = 𝑆)
30 df-lim 5766 . . . . . . . . 9 (Lim 𝑆 ↔ (Ord 𝑆 𝑆 ≠ ∅ ∧ 𝑆 = 𝑆))
312, 23, 29, 30syl3anbrc 1265 . . . . . . . 8 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Lim 𝑆)
3231an32s 863 . . . . . . 7 (((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
33323adantl1 1237 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
34 ssonuni 7028 . . . . . . . . . 10 (𝑆𝑇 → (𝑆 ⊆ On → 𝑆 ∈ On))
35 limeq 5773 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (Lim 𝑦 ↔ Lim 𝑆))
36 fveq2 6229 . . . . . . . . . . . . 13 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹 𝑆))
37 iuneq1 4566 . . . . . . . . . . . . 13 (𝑦 = 𝑆 𝑥𝑦 (𝐹𝑥) = 𝑥 𝑆(𝐹𝑥))
3836, 37eqeq12d 2666 . . . . . . . . . . . 12 (𝑦 = 𝑆 → ((𝐹𝑦) = 𝑥𝑦 (𝐹𝑥) ↔ (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
3935, 38imbi12d 333 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥)) ↔ (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
40 onfununi.1 . . . . . . . . . . 11 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
4139, 40vtoclg 3297 . . . . . . . . . 10 ( 𝑆 ∈ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4234, 41syl6 35 . . . . . . . . 9 (𝑆𝑇 → (𝑆 ⊆ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
4342imp 444 . . . . . . . 8 ((𝑆𝑇𝑆 ⊆ On) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
44433adant3 1101 . . . . . . 7 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4544adantr 480 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4633, 45mpd 15 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))
47 eluni2 4472 . . . . . . . . . . . 12 (𝑥 𝑆 ↔ ∃𝑦𝑆 𝑥𝑦)
48 ssel 3630 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ On → (𝑦𝑆𝑦 ∈ On))
4948anim1d 587 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑦 ∈ On ∧ 𝑥𝑦)))
50 onelon 5786 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
5149, 50syl6 35 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥 ∈ On))
5248adantrd 483 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑦 ∈ On))
53 eloni 5771 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → Ord 𝑦)
5448, 53syl6 35 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → (𝑦𝑆 → Ord 𝑦))
55 ordelss 5777 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦𝑥𝑦) → 𝑥𝑦)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((Ord 𝑦𝑥𝑦) → 𝑥𝑦))
5754, 56syland 497 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥𝑦))
5851, 52, 573jcad 1262 . . . . . . . . . . . . . . 15 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦)))
59 onfununi.2 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
6058, 59syl6 35 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
6160expd 451 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑦𝑆 → (𝑥𝑦 → (𝐹𝑥) ⊆ (𝐹𝑦))))
6261reximdvai 3044 . . . . . . . . . . . 12 (𝑆 ⊆ On → (∃𝑦𝑆 𝑥𝑦 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
6347, 62syl5bi 232 . . . . . . . . . . 11 (𝑆 ⊆ On → (𝑥 𝑆 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
64 ssiun 4594 . . . . . . . . . . 11 (∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦) → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6563, 64syl6 35 . . . . . . . . . 10 (𝑆 ⊆ On → (𝑥 𝑆 → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦)))
6665ralrimiv 2994 . . . . . . . . 9 (𝑆 ⊆ On → ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
67 iunss 4593 . . . . . . . . 9 ( 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦) ↔ ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6866, 67sylibr 224 . . . . . . . 8 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
69 fveq2 6229 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7069cbviunv 4591 . . . . . . . 8 𝑦𝑆 (𝐹𝑦) = 𝑥𝑆 (𝐹𝑥)
7168, 70syl6sseq 3684 . . . . . . 7 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
72713ad2ant2 1103 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7372adantr 480 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7446, 73eqsstrd 3672 . . . 4 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7574ex 449 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (¬ 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥)))
76 fveq2 6229 . . . 4 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹 𝑆))
7776ssiun2s 4596 . . 3 ( 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7875, 77pm2.61d2 172 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7934imp 444 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On) → 𝑆 ∈ On)
80793adant3 1101 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑆 ∈ On)
8163ad2ant2 1103 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆𝑥 ∈ On))
824a1i 11 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆𝑥 𝑆))
8381, 82jcad 554 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝑥 ∈ On ∧ 𝑥 𝑆)))
84 sseq2 3660 . . . . . . . 8 (𝑦 = 𝑆 → (𝑥𝑦𝑥 𝑆))
8584anbi2d 740 . . . . . . 7 (𝑦 = 𝑆 → ((𝑥 ∈ On ∧ 𝑥𝑦) ↔ (𝑥 ∈ On ∧ 𝑥 𝑆)))
8636sseq2d 3666 . . . . . . 7 (𝑦 = 𝑆 → ((𝐹𝑥) ⊆ (𝐹𝑦) ↔ (𝐹𝑥) ⊆ (𝐹 𝑆)))
8785, 86imbi12d 333 . . . . . 6 (𝑦 = 𝑆 → (((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆))))
88593com12 1288 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
89883expib 1287 . . . . . 6 (𝑦 ∈ On → ((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
9087, 89vtoclga 3303 . . . . 5 ( 𝑆 ∈ On → ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9180, 83, 90sylsyld 61 . . . 4 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9291ralrimiv 2994 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
93 iunss 4593 . . 3 ( 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆) ↔ ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9492, 93sylibr 224 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9578, 94eqssd 3653 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607  ∅c0 3948  ∪ cuni 4468  ∪ ciun 4552  Ord word 5760  Oncon0 5761  Lim wlim 5762  ‘cfv 5926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765  df-lim 5766  df-iota 5889  df-fv 5934 This theorem is referenced by:  onovuni  7484
 Copyright terms: Public domain W3C validator