MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onint Structured version   Visualization version   GIF version

Theorem onint 7037
Description: The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of [TakeutiZaring] p. 45. (Contributed by NM, 31-Jan-1997.)
Assertion
Ref Expression
onint ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem onint
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordon 7024 . . . 4 Ord On
2 tz7.5 5782 . . . 4 ((Ord On ∧ 𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (𝐴𝑥) = ∅)
31, 2mp3an1 1451 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (𝐴𝑥) = ∅)
4 ssel 3630 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ On))
54imdistani 726 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (𝐴 ⊆ On ∧ 𝑥 ∈ On))
6 ssel 3630 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ On → (𝑧𝐴𝑧 ∈ On))
7 ontri1 5795 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑥𝑧 ↔ ¬ 𝑧𝑥))
8 ssel 3630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑧 → (𝑦𝑥𝑦𝑧))
97, 8syl6bir 244 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧𝑥 → (𝑦𝑥𝑦𝑧)))
109ex 449 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (𝑧 ∈ On → (¬ 𝑧𝑥 → (𝑦𝑥𝑦𝑧))))
116, 10sylan9 690 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ On ∧ 𝑥 ∈ On) → (𝑧𝐴 → (¬ 𝑧𝑥 → (𝑦𝑥𝑦𝑧))))
1211com4r 94 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → ((𝐴 ⊆ On ∧ 𝑥 ∈ On) → (𝑧𝐴 → (¬ 𝑧𝑥𝑦𝑧))))
1312imp31 447 . . . . . . . . . . . . . . . . 17 (((𝑦𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥 ∈ On)) ∧ 𝑧𝐴) → (¬ 𝑧𝑥𝑦𝑧))
1413ralimdva 2991 . . . . . . . . . . . . . . . 16 ((𝑦𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥 ∈ On)) → (∀𝑧𝐴 ¬ 𝑧𝑥 → ∀𝑧𝐴 𝑦𝑧))
15 disj 4050 . . . . . . . . . . . . . . . 16 ((𝐴𝑥) = ∅ ↔ ∀𝑧𝐴 ¬ 𝑧𝑥)
16 vex 3234 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
1716elint2 4514 . . . . . . . . . . . . . . . 16 (𝑦 𝐴 ↔ ∀𝑧𝐴 𝑦𝑧)
1814, 15, 173imtr4g 285 . . . . . . . . . . . . . . 15 ((𝑦𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥 ∈ On)) → ((𝐴𝑥) = ∅ → 𝑦 𝐴))
195, 18sylan2 490 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥𝐴)) → ((𝐴𝑥) = ∅ → 𝑦 𝐴))
2019exp32 630 . . . . . . . . . . . . 13 (𝑦𝑥 → (𝐴 ⊆ On → (𝑥𝐴 → ((𝐴𝑥) = ∅ → 𝑦 𝐴))))
2120com4l 92 . . . . . . . . . . . 12 (𝐴 ⊆ On → (𝑥𝐴 → ((𝐴𝑥) = ∅ → (𝑦𝑥𝑦 𝐴))))
2221imp32 448 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ (𝐴𝑥) = ∅)) → (𝑦𝑥𝑦 𝐴))
2322ssrdv 3642 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ (𝐴𝑥) = ∅)) → 𝑥 𝐴)
24 intss1 4524 . . . . . . . . . . 11 (𝑥𝐴 𝐴𝑥)
2524ad2antrl 764 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ (𝐴𝑥) = ∅)) → 𝐴𝑥)
2623, 25eqssd 3653 . . . . . . . . 9 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ (𝐴𝑥) = ∅)) → 𝑥 = 𝐴)
2726eleq1d 2715 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ (𝐴𝑥) = ∅)) → (𝑥𝐴 𝐴𝐴))
2827biimpd 219 . . . . . . 7 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ (𝐴𝑥) = ∅)) → (𝑥𝐴 𝐴𝐴))
2928exp32 630 . . . . . 6 (𝐴 ⊆ On → (𝑥𝐴 → ((𝐴𝑥) = ∅ → (𝑥𝐴 𝐴𝐴))))
3029com34 91 . . . . 5 (𝐴 ⊆ On → (𝑥𝐴 → (𝑥𝐴 → ((𝐴𝑥) = ∅ → 𝐴𝐴))))
3130pm2.43d 53 . . . 4 (𝐴 ⊆ On → (𝑥𝐴 → ((𝐴𝑥) = ∅ → 𝐴𝐴)))
3231rexlimdv 3059 . . 3 (𝐴 ⊆ On → (∃𝑥𝐴 (𝐴𝑥) = ∅ → 𝐴𝐴))
333, 32syl5 34 . 2 (𝐴 ⊆ On → ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴))
3433anabsi5 875 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cin 3606  wss 3607  c0 3948   cint 4507  Ord word 5760  Oncon0 5761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765
This theorem is referenced by:  onint0  7038  onssmin  7039  onminesb  7040  onminsb  7041  oninton  7042  oneqmin  7047  oeeulem  7726  nnawordex  7762  unblem1  8253  unblem2  8254  tz9.12lem3  8690  scott0  8787  cardid2  8817  ackbij1lem18  9097  cardcf  9112  cff1  9118  cflim2  9123  cfss  9125  cofsmo  9129  fin23lem26  9185  pwfseqlem3  9520  gruina  9678  2ndcdisj  21307  sltval2  31934  nocvxmin  32019  rankeq1o  32403  dnnumch3  37934
  Copyright terms: Public domain W3C validator