Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onpsstopbas Structured version   Visualization version   GIF version

Theorem onpsstopbas 32413
Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.)
Assertion
Ref Expression
onpsstopbas On ⊊ TopBases

Proof of Theorem onpsstopbas
StepHypRef Expression
1 onsstopbas 32412 . 2 On ⊆ TopBases
2 indistop 20800 . . . 4 {∅, {{∅}}} ∈ Top
3 topbas 20770 . . . 4 ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases)
42, 3ax-mp 5 . . 3 {∅, {{∅}}} ∈ TopBases
5 snex 4906 . . . . . 6 {{∅}} ∈ V
65prid2 4296 . . . . 5 {{∅}} ∈ {∅, {{∅}}}
7 snsn0non 5844 . . . . 5 ¬ {{∅}} ∈ On
8 mth8 158 . . . . 5 ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)))
96, 7, 8mp2 9 . . . 4 ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)
10 onelon 5746 . . . . 5 (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On)
1110ex 450 . . . 4 ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))
129, 11mto 188 . . 3 ¬ {∅, {{∅}}} ∈ On
134, 12pm3.2i 471 . 2 ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On)
14 ssnelpss 3716 . 2 (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases))
151, 13, 14mp2 9 1 On ⊊ TopBases
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1989  wss 3572  wpss 3573  c0 3913  {csn 4175  {cpr 4177  Oncon0 5721  Topctop 20692  TopBasesctb 20743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-ord 5724  df-on 5725  df-iota 5849  df-fun 5888  df-fv 5894  df-top 20693  df-topon 20710  df-bases 20744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator