MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsssuc Structured version   Visualization version   GIF version

Theorem onsssuc 5777
Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsssuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem onsssuc
StepHypRef Expression
1 eloni 5697 . 2 (𝐵 ∈ On → Ord 𝐵)
2 ordsssuc 5776 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
31, 2sylan2 491 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  wss 3559  Ord word 5686  Oncon0 5687  suc csuc 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-ord 5690  df-on 5691  df-suc 5693
This theorem is referenced by:  ordsssuc2  5778  onmindif  5779  tfindsg  7014  dfom2  7021  findsg  7047  ondif2  7534  oeeui  7634  cantnflem1  8538  rankr1bg  8618  rankr1c  8636  cofsmo  9043  cfsmolem  9044  cfcof  9048  fin1a2lem9  9182  alephreg  9356  winainflem  9467  nobndlem8  31597  onsuct0  32117  onint1  32125
  Copyright terms: Public domain W3C validator