Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucuni3 Structured version   Visualization version   GIF version

Theorem onsucuni3 34647
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
onsucuni3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)

Proof of Theorem onsucuni3
StepHypRef Expression
1 eloni 6200 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
213ad2ant1 1129 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵)
3 orduniorsuc 7544 . . . 4 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
42, 3syl 17 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = 𝐵𝐵 = suc 𝐵))
54orcomd 867 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc 𝐵𝐵 = 𝐵))
6 simp2 1133 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅)
7 df-lim 6195 . . . . . . . 8 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
87biimpri 230 . . . . . . 7 ((Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵) → Lim 𝐵)
983expb 1116 . . . . . 6 ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)) → Lim 𝐵)
109con3i 157 . . . . 5 (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
11103ad2ant3 1131 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
122, 11mpnanrd 412 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
136, 12mpnanrd 412 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = 𝐵)
14 orcom 866 . . 3 ((𝐵 = suc 𝐵𝐵 = 𝐵) ↔ (𝐵 = 𝐵𝐵 = suc 𝐵))
15 df-or 844 . . 3 ((𝐵 = 𝐵𝐵 = suc 𝐵) ↔ (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
1614, 15sylbb 221 . 2 ((𝐵 = suc 𝐵𝐵 = 𝐵) → (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
175, 13, 16sylc 65 1 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  c0 4290   cuni 4837  Ord word 6189  Oncon0 6190  Lim wlim 6191  suc csuc 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-tr 5172  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196
This theorem is referenced by:  1oequni2o  34648  rdgsucuni  34649  finxpreclem4  34674
  Copyright terms: Public domain W3C validator