Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuninsuci Structured version   Visualization version   GIF version

Theorem onuninsuci 6987
 Description: A limit ordinal is not a successor ordinal. (Contributed by NM, 18-Feb-2004.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuninsuci (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onuninsuci
StepHypRef Expression
1 onssi.1 . . . . . . 7 𝐴 ∈ On
21onirri 5793 . . . . . 6 ¬ 𝐴𝐴
3 id 22 . . . . . . . 8 (𝐴 = 𝐴𝐴 = 𝐴)
4 df-suc 5688 . . . . . . . . . . . 12 suc 𝑥 = (𝑥 ∪ {𝑥})
54eqeq2i 2633 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝐴 = (𝑥 ∪ {𝑥}))
6 unieq 4410 . . . . . . . . . . 11 (𝐴 = (𝑥 ∪ {𝑥}) → 𝐴 = (𝑥 ∪ {𝑥}))
75, 6sylbi 207 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝐴 = (𝑥 ∪ {𝑥}))
8 uniun 4422 . . . . . . . . . . 11 (𝑥 ∪ {𝑥}) = ( 𝑥 {𝑥})
9 vex 3189 . . . . . . . . . . . . 13 𝑥 ∈ V
109unisn 4417 . . . . . . . . . . . 12 {𝑥} = 𝑥
1110uneq2i 3742 . . . . . . . . . . 11 ( 𝑥 {𝑥}) = ( 𝑥𝑥)
128, 11eqtri 2643 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = ( 𝑥𝑥)
137, 12syl6eq 2671 . . . . . . . . 9 (𝐴 = suc 𝑥 𝐴 = ( 𝑥𝑥))
14 tron 5705 . . . . . . . . . . . 12 Tr On
15 eleq1 2686 . . . . . . . . . . . . 13 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
161, 15mpbii 223 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → suc 𝑥 ∈ On)
17 trsuc 5769 . . . . . . . . . . . 12 ((Tr On ∧ suc 𝑥 ∈ On) → 𝑥 ∈ On)
1814, 16, 17sylancr 694 . . . . . . . . . . 11 (𝐴 = suc 𝑥𝑥 ∈ On)
19 eloni 5692 . . . . . . . . . . . . 13 (𝑥 ∈ On → Ord 𝑥)
20 ordtr 5696 . . . . . . . . . . . . 13 (Ord 𝑥 → Tr 𝑥)
2119, 20syl 17 . . . . . . . . . . . 12 (𝑥 ∈ On → Tr 𝑥)
22 df-tr 4713 . . . . . . . . . . . 12 (Tr 𝑥 𝑥𝑥)
2321, 22sylib 208 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥𝑥)
2418, 23syl 17 . . . . . . . . . 10 (𝐴 = suc 𝑥 𝑥𝑥)
25 ssequn1 3761 . . . . . . . . . 10 ( 𝑥𝑥 ↔ ( 𝑥𝑥) = 𝑥)
2624, 25sylib 208 . . . . . . . . 9 (𝐴 = suc 𝑥 → ( 𝑥𝑥) = 𝑥)
2713, 26eqtrd 2655 . . . . . . . 8 (𝐴 = suc 𝑥 𝐴 = 𝑥)
283, 27sylan9eqr 2677 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴 = 𝑥)
299sucid 5763 . . . . . . . . 9 𝑥 ∈ suc 𝑥
30 eleq2 2687 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝑥𝐴𝑥 ∈ suc 𝑥))
3129, 30mpbiri 248 . . . . . . . 8 (𝐴 = suc 𝑥𝑥𝐴)
3231adantr 481 . . . . . . 7 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝑥𝐴)
3328, 32eqeltrd 2698 . . . . . 6 ((𝐴 = suc 𝑥𝐴 = 𝐴) → 𝐴𝐴)
342, 33mto 188 . . . . 5 ¬ (𝐴 = suc 𝑥𝐴 = 𝐴)
3534imnani 439 . . . 4 (𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
3635rexlimivw 3022 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ 𝐴 = 𝐴)
37 onuni 6940 . . . . 5 (𝐴 ∈ On → 𝐴 ∈ On)
381, 37ax-mp 5 . . . 4 𝐴 ∈ On
391onuniorsuci 6986 . . . . 5 (𝐴 = 𝐴𝐴 = suc 𝐴)
4039ori 390 . . . 4 𝐴 = 𝐴𝐴 = suc 𝐴)
41 suceq 5749 . . . . . 6 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
4241eqeq2d 2631 . . . . 5 (𝑥 = 𝐴 → (𝐴 = suc 𝑥𝐴 = suc 𝐴))
4342rspcev 3295 . . . 4 (( 𝐴 ∈ On ∧ 𝐴 = suc 𝐴) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4438, 40, 43sylancr 694 . . 3 𝐴 = 𝐴 → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
4536, 44impbii 199 . 2 (∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ 𝐴 = 𝐴)
4645con2bii 347 1 (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   ∪ cun 3553   ⊆ wss 3555  {csn 4148  ∪ cuni 4402  Tr wtr 4712  Ord word 5681  Oncon0 5682  suc csuc 5684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-ord 5685  df-on 5686  df-suc 5688 This theorem is referenced by:  orduninsuc  6990
 Copyright terms: Public domain W3C validator