MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onxpdisj Structured version   Visualization version   GIF version

Theorem onxpdisj 6304
Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non 6303. (Contributed by NM, 1-Jun-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onxpdisj (On ∩ (V × V)) = ∅

Proof of Theorem onxpdisj
StepHypRef Expression
1 disj 4398 . 2 ((On ∩ (V × V)) = ∅ ↔ ∀𝑥 ∈ On ¬ 𝑥 ∈ (V × V))
2 on0eqel 6302 . . 3 (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
3 0nelxp 5583 . . . . 5 ¬ ∅ ∈ (V × V)
4 eleq1 2900 . . . . 5 (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V)))
53, 4mtbiri 329 . . . 4 (𝑥 = ∅ → ¬ 𝑥 ∈ (V × V))
6 0nelelxp 5584 . . . . 5 (𝑥 ∈ (V × V) → ¬ ∅ ∈ 𝑥)
76con2i 141 . . . 4 (∅ ∈ 𝑥 → ¬ 𝑥 ∈ (V × V))
85, 7jaoi 853 . . 3 ((𝑥 = ∅ ∨ ∅ ∈ 𝑥) → ¬ 𝑥 ∈ (V × V))
92, 8syl 17 . 2 (𝑥 ∈ On → ¬ 𝑥 ∈ (V × V))
101, 9mprgbir 3153 1 (On ∩ (V × V)) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1533  wcel 2110  Vcvv 3494  cin 3934  c0 4290   × cxp 5547  Oncon0 6185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-ord 6188  df-on 6189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator