MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbi2dv Structured version   Visualization version   GIF version

Theorem opabbi2dv 5181
Description: Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2728. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
opabbi2dv.1 Rel 𝐴
opabbi2dv.3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
Assertion
Ref Expression
opabbi2dv (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem opabbi2dv
StepHypRef Expression
1 opabbi2dv.1 . . 3 Rel 𝐴
2 opabid2 5161 . . 3 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
31, 2ax-mp 5 . 2 {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴
4 opabbi2dv.3 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
54opabbidv 4642 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
63, 5syl5eqr 2657 1 (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194   = wceq 1474  wcel 1976  cop 4130  {copab 4636  Rel wrel 5033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-opab 4638  df-xp 5034  df-rel 5035
This theorem is referenced by:  recmulnq  9642  dib1dim  35275
  Copyright terms: Public domain W3C validator