Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabdm Structured version   Visualization version   GIF version

Theorem opabdm 30364
Description: Domain of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
opabdm (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑})
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabdm
StepHypRef Expression
1 df-dm 5567 . 2 dom 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
2 nfopab1 5137 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
32nfeq2 2997 . . 3 𝑥 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 nfopab2 5138 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfeq2 2997 . . . 4 𝑦 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 df-br 5069 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 eleq2 2903 . . . . . 6 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
8 opabidw 5414 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
97, 8syl6bb 289 . . . . 5 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝜑))
106, 9syl5bb 285 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑥𝑅𝑦𝜑))
115, 10exbid 2225 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (∃𝑦 𝑥𝑅𝑦 ↔ ∃𝑦𝜑))
123, 11abbid 2889 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦} = {𝑥 ∣ ∃𝑦𝜑})
131, 12syl5eq 2870 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1780  wcel 2114  {cab 2801  cop 4575   class class class wbr 5068  {copab 5130  dom cdm 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-dm 5567
This theorem is referenced by:  fpwrelmapffslem  30470
  Copyright terms: Public domain W3C validator