![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon3b | Structured version Visualization version GIF version |
Description: Contraposition law for orthoposets. (chcon3i 28453 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opcon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6229 | . . 3 ⊢ (𝑌 = 𝑋 → ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋)) | |
2 | 1 | eqcoms 2659 | . 2 ⊢ (𝑋 = 𝑌 → ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋)) |
3 | fveq2 6229 | . . . 4 ⊢ (( ⊥ ‘𝑋) = ( ⊥ ‘𝑌) → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) | |
4 | 3 | eqcoms 2659 | . . 3 ⊢ (( ⊥ ‘𝑌) = ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
5 | opoccl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | opoccl.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
7 | 5, 6 | opococ 34800 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
8 | 7 | 3adant3 1101 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
9 | 5, 6 | opococ 34800 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
10 | 9 | 3adant2 1100 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
11 | 8, 10 | eqeq12d 2666 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌)) ↔ 𝑋 = 𝑌)) |
12 | 4, 11 | syl5ib 234 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) = ( ⊥ ‘𝑋) → 𝑋 = 𝑌)) |
13 | 2, 12 | impbid2 216 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 Basecbs 15904 occoc 15996 OPcops 34777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-dm 5153 df-iota 5889 df-fv 5934 df-ov 6693 df-oposet 34781 |
This theorem is referenced by: opcon2b 34802 omllaw4 34851 cmtbr2N 34858 cvrcmp2 34889 lhpmod2i2 35642 lhpmod6i1 35643 |
Copyright terms: Public domain | W3C validator |