MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcn Structured version   Visualization version   GIF version

Theorem opelcn 10142
Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelcn (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))

Proof of Theorem opelcn
StepHypRef Expression
1 df-c 10134 . . 3 ℂ = (R × R)
21eleq2i 2831 . 2 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 opelxp 5303 . 2 (⟨𝐴, 𝐵⟩ ∈ (R × R) ↔ (𝐴R𝐵R))
42, 3bitri 264 1 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wcel 2139  cop 4327   × cxp 5264  Rcnr 9879  cc 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865  df-xp 5272  df-c 10134
This theorem is referenced by:  axicn  10163
  Copyright terms: Public domain W3C validator