Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeldifid Structured version   Visualization version   GIF version

Theorem opeldifid 30348
Description: Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.)
Assertion
Ref Expression
opeldifid (Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌)))

Proof of Theorem opeldifid
StepHypRef Expression
1 reldif 5687 . . . 4 (Rel 𝐴 → Rel (𝐴 ∖ I ))
2 brrelex2 5605 . . . 4 ((Rel (𝐴 ∖ I ) ∧ 𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V)
31, 2sylan 582 . . 3 ((Rel 𝐴𝑋(𝐴 ∖ I )𝑌) → 𝑌 ∈ V)
4 brrelex2 5605 . . . 4 ((Rel 𝐴𝑋𝐴𝑌) → 𝑌 ∈ V)
54adantrr 715 . . 3 ((Rel 𝐴 ∧ (𝑋𝐴𝑌𝑋𝑌)) → 𝑌 ∈ V)
6 brdif 5118 . . . 4 (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌))
7 ideqg 5721 . . . . . 6 (𝑌 ∈ V → (𝑋 I 𝑌𝑋 = 𝑌))
87necon3bbid 3053 . . . . 5 (𝑌 ∈ V → (¬ 𝑋 I 𝑌𝑋𝑌))
98anbi2d 630 . . . 4 (𝑌 ∈ V → ((𝑋𝐴𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋𝐴𝑌𝑋𝑌)))
106, 9syl5bb 285 . . 3 (𝑌 ∈ V → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌𝑋𝑌)))
113, 5, 10pm5.21nd 800 . 2 (Rel 𝐴 → (𝑋(𝐴 ∖ I )𝑌 ↔ (𝑋𝐴𝑌𝑋𝑌)))
12 df-br 5066 . 2 (𝑋(𝐴 ∖ I )𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ))
13 df-br 5066 . . 3 (𝑋𝐴𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝐴)
1413anbi1i 625 . 2 ((𝑋𝐴𝑌𝑋𝑌) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌))
1511, 12, 143bitr3g 315 1 (Rel 𝐴 → (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ I ) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  cop 4572   class class class wbr 5065   I cid 5458  Rel wrel 5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561
This theorem is referenced by:  qtophaus  31100
  Copyright terms: Public domain W3C validator