MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopab2a Structured version   Visualization version   GIF version

Theorem opelopab2a 5019
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
opelopab2a ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opelopab2a
StepHypRef Expression
1 eleq1 2718 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 eleq1 2718 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐷𝐵𝐷))
31, 2bi2anan9 935 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝐶𝐵𝐷)))
4 opelopabga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
53, 4anbi12d 747 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷) ∧ 𝜑) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
65opelopabga 5017 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
76bianabs 942 1 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cop 4216  {copab 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746
This theorem is referenced by:  opelopab2  5025  brab2a  5228  prdsleval  16184  isperp  25652
  Copyright terms: Public domain W3C validator