![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opidon2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of mndpfo 17486 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opidon2OLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
opidon2OLD | ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2748 | . . 3 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
2 | 1 | opidonOLD 33933 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺) |
3 | opidon2OLD.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | forn 6267 | . . . 4 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺) | |
5 | 3, 4 | syl5req 2795 | . . 3 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → dom dom 𝐺 = 𝑋) |
6 | xpeq12 5279 | . . . . . . 7 ⊢ ((dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋) → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) | |
7 | 6 | anidms 680 | . . . . . 6 ⊢ (dom dom 𝐺 = 𝑋 → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) |
8 | foeq2 6261 | . . . . . 6 ⊢ ((dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋) → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) |
10 | foeq3 6262 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) | |
11 | 9, 10 | bitrd 268 | . . . 4 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
12 | 11 | biimpd 219 | . . 3 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
13 | 5, 12 | mpcom 38 | . 2 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
14 | 2, 13 | syl 17 | 1 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1620 ∈ wcel 2127 ∩ cin 3702 × cxp 5252 dom cdm 5254 ran crn 5255 –onto→wfo 6035 ExId cexid 33925 Magmacmagm 33929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-fo 6043 df-fv 6045 df-ov 6804 df-exid 33926 df-mgmOLD 33930 |
This theorem is referenced by: exidreslem 33958 |
Copyright terms: Public domain | W3C validator |