Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgov Structured version   Visualization version   GIF version

Theorem opiedgov 25869
 Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opiedgov ((𝑉𝑋𝐸𝑌) → (𝑉iEdg𝐸) = 𝐸)

Proof of Theorem opiedgov
StepHypRef Expression
1 df-ov 6638 . . 3 (𝑉iEdg𝐸) = (iEdg‘⟨𝑉, 𝐸⟩)
21a1i 11 . 2 ((𝑉𝑋𝐸𝑌) → (𝑉iEdg𝐸) = (iEdg‘⟨𝑉, 𝐸⟩))
3 opiedgfv 25868 . 2 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
42, 3eqtrd 2654 1 ((𝑉𝑋𝐸𝑌) → (𝑉iEdg𝐸) = 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481   ∈ wcel 1988  ⟨cop 4174  ‘cfv 5876  (class class class)co 6635  iEdgciedg 25856 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fv 5884  df-ov 6638  df-2nd 7154  df-iedg 25858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator