Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltn0 Structured version   Visualization version   GIF version

Theorem opltn0 33954
Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
opltne0.b 𝐵 = (Base‘𝐾)
opltne0.s < = (lt‘𝐾)
opltne0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
opltn0 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))

Proof of Theorem opltn0
StepHypRef Expression
1 simpl 473 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ OP)
2 opltne0.b . . . . 5 𝐵 = (Base‘𝐾)
3 opltne0.z . . . . 5 0 = (0.‘𝐾)
42, 3op0cl 33948 . . . 4 (𝐾 ∈ OP → 0𝐵)
54adantr 481 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0𝐵)
6 simpr 477 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2621 . . . 4 (le‘𝐾) = (le‘𝐾)
8 opltne0.s . . . 4 < = (lt‘𝐾)
97, 8pltval 16881 . . 3 ((𝐾 ∈ OP ∧ 0𝐵𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
101, 5, 6, 9syl3anc 1323 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
11 necom 2843 . . 3 (𝑋00𝑋)
122, 7, 3op0le 33950 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
1312biantrurd 529 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0𝑋 ↔ ( 0 (le‘𝐾)𝑋0𝑋)))
1411, 13syl5rbb 273 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (( 0 (le‘𝐾)𝑋0𝑋) ↔ 𝑋0 ))
1510, 14bitrd 268 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 < 𝑋𝑋0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  Basecbs 15781  lecple 15869  ltcplt 16862  0.cp0 16958  OPcops 33936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-plt 16879  df-glb 16896  df-p0 16960  df-oposet 33940
This theorem is referenced by:  atle  34199  dalemcea  34423  2atm2atN  34548  dia2dimlem2  35831  dia2dimlem3  35832
  Copyright terms: Public domain W3C validator