MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf1 Structured version   Visualization version   GIF version

Theorem opncldf1 21691
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf1 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑢,𝐽   𝑢,𝑋,𝑥
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem opncldf1
StepHypRef Expression
1 opncldf.2 . 2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
2 opncldf.1 . . 3 𝑋 = 𝐽
32opncld 21640 . 2 ((𝐽 ∈ Top ∧ 𝑢𝐽) → (𝑋𝑢) ∈ (Clsd‘𝐽))
42cldopn 21638 . . 3 (𝑥 ∈ (Clsd‘𝐽) → (𝑋𝑥) ∈ 𝐽)
54adantl 484 . 2 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋𝑥) ∈ 𝐽)
62cldss 21636 . . . . . . 7 (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋)
76ad2antll 727 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑥𝑋)
8 dfss4 4234 . . . . . 6 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
97, 8sylib 220 . . . . 5 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
109eqcomd 2827 . . . 4 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑥 = (𝑋 ∖ (𝑋𝑥)))
11 difeq2 4092 . . . . 5 (𝑢 = (𝑋𝑥) → (𝑋𝑢) = (𝑋 ∖ (𝑋𝑥)))
1211eqeq2d 2832 . . . 4 (𝑢 = (𝑋𝑥) → (𝑥 = (𝑋𝑢) ↔ 𝑥 = (𝑋 ∖ (𝑋𝑥))))
1310, 12syl5ibrcom 249 . . 3 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋𝑥) → 𝑥 = (𝑋𝑢)))
142eltopss 21514 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢𝐽) → 𝑢𝑋)
1514adantrr 715 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑢𝑋)
16 dfss4 4234 . . . . . 6 (𝑢𝑋 ↔ (𝑋 ∖ (𝑋𝑢)) = 𝑢)
1715, 16sylib 220 . . . . 5 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋𝑢)) = 𝑢)
1817eqcomd 2827 . . . 4 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → 𝑢 = (𝑋 ∖ (𝑋𝑢)))
19 difeq2 4092 . . . . 5 (𝑥 = (𝑋𝑢) → (𝑋𝑥) = (𝑋 ∖ (𝑋𝑢)))
2019eqeq2d 2832 . . . 4 (𝑥 = (𝑋𝑢) → (𝑢 = (𝑋𝑥) ↔ 𝑢 = (𝑋 ∖ (𝑋𝑢))))
2118, 20syl5ibrcom 249 . . 3 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑥 = (𝑋𝑢) → 𝑢 = (𝑋𝑥)))
2213, 21impbid 214 . 2 ((𝐽 ∈ Top ∧ (𝑢𝐽𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋𝑥) ↔ 𝑥 = (𝑋𝑢)))
231, 3, 5, 22f1ocnv2d 7397 1 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cdif 3932  wss 3935   cuni 4837  cmpt 5145  ccnv 5553  1-1-ontowf1o 6353  cfv 6354  Topctop 21500  Clsdccld 21623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-top 21501  df-cld 21626
This theorem is referenced by:  opncldf3  21693  cmpfi  22015
  Copyright terms: Public domain W3C validator