MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf3 Structured version   Visualization version   GIF version

Theorem opncldf3 21688
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf3 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑋
Allowed substitution hints:   𝐵(𝑢)   𝐹(𝑢)

Proof of Theorem opncldf3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 21628 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 opncldf.1 . . . . . 6 𝑋 = 𝐽
3 opncldf.2 . . . . . 6 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
42, 3opncldf1 21686 . . . . 5 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
54simprd 498 . . . 4 (𝐽 ∈ Top → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
61, 5syl 17 . . 3 (𝐵 ∈ (Clsd‘𝐽) → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
76fveq1d 6667 . 2 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵))
82cldopn 21633 . . 3 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
9 difeq2 4093 . . . 4 (𝑥 = 𝐵 → (𝑋𝑥) = (𝑋𝐵))
10 eqid 2821 . . . 4 (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))
119, 10fvmptg 6761 . . 3 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
128, 11mpdan 685 . 2 (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
137, 12eqtrd 2856 1 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cdif 3933   cuni 4832  cmpt 5139  ccnv 5549  1-1-ontowf1o 6349  cfv 6350  Topctop 21495  Clsdccld 21618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-top 21496  df-cld 21621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator