Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnmbllem0 Structured version   Visualization version   GIF version

Theorem opnmbllem0 34930
Description: Lemma for ismblfin 34935; could also be used to shorten proof of opnmbllem 24204. (Contributed by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
opnmbllem0 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnmbllem0
Dummy variables 𝑛 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . . . . . 8 (𝑧 = 𝑤 → ([,]‘𝑧) = ([,]‘𝑤))
21sseq1d 4000 . . . . . . 7 (𝑧 = 𝑤 → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴))
32elrab 3682 . . . . . 6 (𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴))
4 simprr 771 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ⊆ 𝐴)
5 fvex 6685 . . . . . . . 8 ([,]‘𝑤) ∈ V
65elpw 4545 . . . . . . 7 (([,]‘𝑤) ∈ 𝒫 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴)
74, 6sylibr 236 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ∈ 𝒫 𝐴)
83, 7sylan2b 595 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) → ([,]‘𝑤) ∈ 𝒫 𝐴)
98ralrimiva 3184 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
10 iccf 12839 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
11 ffun 6519 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
1210, 11ax-mp 5 . . . . 5 Fun [,]
13 ssrab2 4058 . . . . . . 7 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
14 oveq1 7165 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 / (2↑𝑦)) = (𝑟 / (2↑𝑦)))
15 oveq1 7165 . . . . . . . . . . . . 13 (𝑥 = 𝑟 → (𝑥 + 1) = (𝑟 + 1))
1615oveq1d 7173 . . . . . . . . . . . 12 (𝑥 = 𝑟 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑦)))
1714, 16opeq12d 4813 . . . . . . . . . . 11 (𝑥 = 𝑟 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩)
18 oveq2 7166 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (2↑𝑦) = (2↑𝑠))
1918oveq2d 7174 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 / (2↑𝑦)) = (𝑟 / (2↑𝑠)))
2018oveq2d 7174 . . . . . . . . . . . 12 (𝑦 = 𝑠 → ((𝑟 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑠)))
2119, 20opeq12d 4813 . . . . . . . . . . 11 (𝑦 = 𝑠 → ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2217, 21cbvmpov 7251 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑟 ∈ ℤ, 𝑠 ∈ ℕ0 ↦ ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2322dyadf 24194 . . . . . . . . 9 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
24 frn 6522 . . . . . . . . 9 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
2523, 24ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
26 inss2 4208 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
27 rexpssxrxp 10688 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2826, 27sstri 3978 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
2925, 28sstri 3978 . . . . . . 7 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ* × ℝ*)
3013, 29sstri 3978 . . . . . 6 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ (ℝ* × ℝ*)
3110fdmi 6526 . . . . . 6 dom [,] = (ℝ* × ℝ*)
3230, 31sseqtrri 4006 . . . . 5 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]
33 funimass4 6732 . . . . 5 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴))
3412, 32, 33mp2an 690 . . . 4 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
359, 34sylibr 236 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴)
36 sspwuni 5024 . . 3 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
3735, 36sylib 220 . 2 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
38 eqid 2823 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3938rexmet 23401 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
40 eqid 2823 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4138, 40tgioo 23406 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4241mopni2 23105 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
4339, 42mp3an1 1444 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
44 elssuni 4870 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
45 uniretop 23373 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4644, 45sseqtrrdi 4020 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
4746sselda 3969 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
48 rpre 12400 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4938bl2ioo 23402 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5047, 48, 49syl2an 597 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5150sseq1d 4000 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 ↔ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴))
52 2re 11714 . . . . . . . . 9 2 ∈ ℝ
53 1lt2 11811 . . . . . . . . 9 1 < 2
54 expnlbnd 13597 . . . . . . . . 9 ((𝑟 ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5552, 53, 54mp3an23 1449 . . . . . . . 8 (𝑟 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5655ad2antrl 726 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5747ad2antrr 724 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ℝ)
58 2nn 11713 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
59 nnnn0 11907 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6059ad2antrl 726 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑛 ∈ ℕ0)
61 nnexpcl 13445 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
6258, 60, 61sylancr 589 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℕ)
6362nnred 11655 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℝ)
6457, 63remulcld 10673 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) ∈ ℝ)
65 fllelt 13170 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6664, 65syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6766simpld 497 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)))
68 reflcl 13169 . . . . . . . . . . . . 13 ((𝑤 · (2↑𝑛)) ∈ ℝ → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
6964, 68syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
7062nngt0d 11689 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 0 < (2↑𝑛))
71 ledivmul2 11521 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7269, 57, 63, 70, 71syl112anc 1370 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7367, 72mpbird 259 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤)
74 peano2re 10815 . . . . . . . . . . . . 13 ((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7569, 74syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7675, 62nndivred 11694 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ)
7766simprd 498 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1))
78 ltmuldiv 11515 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
7957, 75, 63, 70, 78syl112anc 1370 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8077, 79mpbid 234 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8157, 76, 80ltled 10790 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8269, 62nndivred 11694 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ)
83 elicc2 12804 . . . . . . . . . . 11 ((((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8482, 76, 83syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8557, 73, 81, 84mpbir3and 1338 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8664flcld 13171 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ)
8722dyadval 24195 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8886, 60, 87syl2anc 586 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8988fveq2d 6676 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩))
90 df-ov 7161 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
9189, 90syl6eqr 2876 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
9285, 91eleqtrrd 2918 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
93 ffn 6516 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0))
9423, 93ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0)
95 fnovrn 7325 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0) ∧ (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9694, 95mp3an1 1444 . . . . . . . . . . 11 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9786, 60, 96syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
98 simplrl 775 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ+)
9998rpred 12434 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ)
10057, 99resubcld 11070 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ)
101100rexrd 10693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ*)
10257, 99readdcld 10672 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ)
103102rexrd 10693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ*)
10482, 99readdcld 10672 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟) ∈ ℝ)
10569recnd 10671 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℂ)
106 1cnd 10638 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 1 ∈ ℂ)
10763recnd 10671 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℂ)
10862nnne0d 11690 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ≠ 0)
109105, 106, 107, 108divdird 11456 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))))
11062nnrecred 11691 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) ∈ ℝ)
111 simprr 771 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) < 𝑟)
112110, 99, 82, 111ltadd2dd 10801 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
113109, 112eqbrtrd 5090 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11457, 76, 104, 80, 113lttrd 10803 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11557, 99, 82ltsubaddd 11238 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)))
116114, 115mpbird 259 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)))
11757, 110readdcld 10672 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) ∈ ℝ)
11882, 57, 110, 73leadd1dd 11256 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) ≤ (𝑤 + (1 / (2↑𝑛))))
119109, 118eqbrtrd 5090 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ≤ (𝑤 + (1 / (2↑𝑛))))
120110, 99, 57, 111ltadd2dd 10801 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) < (𝑤 + 𝑟))
12176, 117, 102, 119, 120lelttrd 10800 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))
122 iccssioo 12808 . . . . . . . . . . . . 13 ((((𝑤𝑟) ∈ ℝ* ∧ (𝑤 + 𝑟) ∈ ℝ*) ∧ ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
123101, 103, 116, 121, 122syl22anc 836 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
12491, 123eqsstrd 4007 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
125 simplrr 776 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)
126124, 125sstrd 3979 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴)
127 fveq2 6672 . . . . . . . . . . . 12 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → ([,]‘𝑧) = ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
128127sseq1d 4000 . . . . . . . . . . 11 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
129128elrab 3682 . . . . . . . . . 10 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
13097, 126, 129sylanbrc 585 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})
131 funfvima2 6995 . . . . . . . . . 10 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13212, 32, 131mp2an 690 . . . . . . . . 9 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
133130, 132syl 17 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
134 elunii 4845 . . . . . . . 8 ((𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13592, 133, 134syl2anc 586 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13656, 135rexlimddv 3293 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
137136expr 459 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13851, 137sylbid 242 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
139138rexlimdva 3286 . . 3 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → (∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
14043, 139mpd 15 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
14137, 140eqelssd 3990 1 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  cin 3937  wss 3938  𝒫 cpw 4541  cop 4575   cuni 4840   class class class wbr 5068   × cxp 5555  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  ccom 5561  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  +crp 12392  (,)cioo 12741  [,]cicc 12744  cfl 13163  cexp 13432  abscabs 14595  topGenctg 16713  ∞Metcxmet 20532  ballcbl 20534  MetOpencmopn 20537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556
This theorem is referenced by:  mblfinlem1  34931  mblfinlem2  34932
  Copyright terms: Public domain W3C validator