MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnnei Structured version   Visualization version   GIF version

Theorem opnnei 21722
Description: A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009.)
Assertion
Ref Expression
opnnei (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆

Proof of Theorem opnnei
StepHypRef Expression
1 0opn 21506 . . . . 5 (𝐽 ∈ Top → ∅ ∈ 𝐽)
21adantr 483 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∅ ∈ 𝐽)
3 eleq1 2900 . . . . 5 (𝑆 = ∅ → (𝑆𝐽 ↔ ∅ ∈ 𝐽))
43adantl 484 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆𝐽 ↔ ∅ ∈ 𝐽))
52, 4mpbird 259 . . 3 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → 𝑆𝐽)
6 rzal 4452 . . . 4 (𝑆 = ∅ → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
76adantl 484 . . 3 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
85, 72thd 267 . 2 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
9 opnneip 21721 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑥𝑆) → 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1093expia 1117 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑥𝑆𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1110ralrimiv 3181 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1211ex 415 . . . 4 (𝐽 ∈ Top → (𝑆𝐽 → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1312adantr 483 . . 3 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆𝐽 → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
14 df-ne 3017 . . . . . 6 (𝑆 ≠ ∅ ↔ ¬ 𝑆 = ∅)
15 r19.2z 4439 . . . . . . 7 ((𝑆 ≠ ∅ ∧ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1615ex 415 . . . . . 6 (𝑆 ≠ ∅ → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1714, 16sylbir 237 . . . . 5 𝑆 = ∅ → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
18 eqid 2821 . . . . . . . 8 𝐽 = 𝐽
1918neii1 21708 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 𝐽)
2019ex 415 . . . . . 6 (𝐽 ∈ Top → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2120rexlimdvw 3290 . . . . 5 (𝐽 ∈ Top → (∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2217, 21sylan9r 511 . . . 4 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2318ntrss2 21659 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
2423adantr 483 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
25 vex 3497 . . . . . . . . . . . . 13 𝑥 ∈ V
2625snss 4711 . . . . . . . . . . . 12 (𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆))
2726ralbii 3165 . . . . . . . . . . 11 (∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆))
28 dfss3 3955 . . . . . . . . . . . . 13 (𝑆 ⊆ ((int‘𝐽)‘𝑆) ↔ ∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆))
2928biimpri 230 . . . . . . . . . . . 12 (∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3029adantl 484 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3127, 30sylan2br 596 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3224, 31eqssd 3983 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) = 𝑆)
3332ex 415 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆) → ((int‘𝐽)‘𝑆) = 𝑆))
3425snss 4711 . . . . . . . . . . . 12 (𝑥𝑆 ↔ {𝑥} ⊆ 𝑆)
35 sstr2 3973 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝑆 → (𝑆 𝐽 → {𝑥} ⊆ 𝐽))
3635com12 32 . . . . . . . . . . . . 13 (𝑆 𝐽 → ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ 𝐽))
3736adantl 484 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ 𝐽))
3834, 37syl5bi 244 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑥𝑆 → {𝑥} ⊆ 𝐽))
3938imp 409 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝑥𝑆) → {𝑥} ⊆ 𝐽)
4018neiint 21706 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝐽𝑆 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
41403com23 1122 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ {𝑥} ⊆ 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
42413expa 1114 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ {𝑥} ⊆ 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4339, 42syldan 593 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝑥𝑆) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4443ralbidva 3196 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4518isopn3 21668 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
4633, 44, 453imtr4d 296 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽))
4746ex 415 . . . . . 6 (𝐽 ∈ Top → (𝑆 𝐽 → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽)))
4847com23 86 . . . . 5 (𝐽 ∈ Top → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 𝐽𝑆𝐽)))
4948adantr 483 . . . 4 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 𝐽𝑆𝐽)))
5022, 49mpdd 43 . . 3 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽))
5113, 50impbid 214 . 2 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
528, 51pm2.61dan 811 1 (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  wss 3935  c0 4290  {csn 4560   cuni 4831  cfv 6349  Topctop 21495  intcnt 21619  neicnei 21699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-top 21496  df-ntr 21622  df-nei 21700
This theorem is referenced by:  neiptopreu  21735  flimcf  22584
  Copyright terms: Public domain W3C validator