![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnneiss | Structured version Visualization version GIF version |
Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.) |
Ref | Expression |
---|---|
opnneiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1083 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ 𝑁) | |
2 | eqid 2651 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | eltopss 20760 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) → 𝑁 ⊆ ∪ 𝐽) |
4 | sstr 3644 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ ∪ 𝐽) → 𝑆 ⊆ ∪ 𝐽) | |
5 | 4 | ancoms 468 | . . . 4 ⊢ ((𝑁 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
6 | 3, 5 | stoic3 1741 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
7 | 2 | opnneissb 20966 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
8 | 6, 7 | syld3an3 1411 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
9 | 1, 8 | mpbid 222 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 ∈ wcel 2030 ⊆ wss 3607 ∪ cuni 4468 ‘cfv 5926 Topctop 20746 neicnei 20949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-top 20747 df-nei 20950 |
This theorem is referenced by: opnneip 20971 tpnei 20973 topssnei 20976 opnneiid 20978 neissex 20979 cmpkgen 21402 |
Copyright terms: Public domain | W3C validator |