Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnssborel Structured version   Visualization version   GIF version

Theorem opnssborel 39329
Description: Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
opnssborel.a 𝐴 = (TopOpen‘(ℝ^‘𝑋))
opnssborel.b 𝐵 = (SalGen‘𝐴)
Assertion
Ref Expression
opnssborel 𝐴𝐵

Proof of Theorem opnssborel
StepHypRef Expression
1 opnssborel.a . . 3 𝐴 = (TopOpen‘(ℝ^‘𝑋))
2 fvex 6098 . . 3 (TopOpen‘(ℝ^‘𝑋)) ∈ V
31, 2eqeltri 2683 . 2 𝐴 ∈ V
4 opnssborel.b . . 3 𝐵 = (SalGen‘𝐴)
54sssalgen 39033 . 2 (𝐴 ∈ V → 𝐴𝐵)
63, 5ax-mp 5 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1976  Vcvv 3172  wss 3539  cfv 5790  TopOpenctopn 15851  ℝ^crrx 22896  SalGencsalgen 39012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-int 4405  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-iota 5754  df-fun 5792  df-fv 5798  df-salg 39009  df-salgen 39013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator