Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem2 Structured version   Visualization version   GIF version

Theorem opnvonmbllem2 40610
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem2.x (𝜑𝑋 ∈ Fin)
opnvonmbllem2.n 𝑆 = dom (voln‘𝑋)
opnvonmbllem2.g (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
opnvonmbl.k 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
Assertion
Ref Expression
opnvonmbllem2 (𝜑𝐺𝑆)
Distinct variable groups:   ,𝐺,𝑖   ,𝐾,𝑖   𝑆,,𝑖   ,𝑋,𝑖   𝜑,,𝑖

Proof of Theorem opnvonmbllem2
Dummy variables 𝑥 𝑘 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opnvonmbllem2.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
2 eqid 2620 . . . . . . . . . . . 12 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
32rrxmetfi 40270 . . . . . . . . . . 11 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
41, 3syl 17 . . . . . . . . . 10 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
5 metxmet 22120 . . . . . . . . . 10 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
64, 5syl 17 . . . . . . . . 9 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
76adantr 481 . . . . . . . 8 ((𝜑𝑥𝐺) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
8 opnvonmbllem2.g . . . . . . . . . 10 (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
9 eqid 2620 . . . . . . . . . . . . . 14 (ℝ^‘𝑋) = (ℝ^‘𝑋)
109rrxval 23156 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → (ℝ^‘𝑋) = (toℂHil‘(ℝfld freeLMod 𝑋)))
111, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (ℝ^‘𝑋) = (toℂHil‘(ℝfld freeLMod 𝑋)))
1211fveq2d 6182 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))))
13 ovex 6663 . . . . . . . . . . . . 13 (ℝfld freeLMod 𝑋) ∈ V
14 eqid 2620 . . . . . . . . . . . . . 14 (toℂHil‘(ℝfld freeLMod 𝑋)) = (toℂHil‘(ℝfld freeLMod 𝑋))
15 eqid 2620 . . . . . . . . . . . . . 14 (dist‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))
16 eqid 2620 . . . . . . . . . . . . . 14 (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋)))
1714, 15, 16tchtopn 23006 . . . . . . . . . . . . 13 ((ℝfld freeLMod 𝑋) ∈ V → (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))))
1813, 17ax-mp 5 . . . . . . . . . . . 12 (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋))))
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))))
2011eqcomd 2626 . . . . . . . . . . . . 13 (𝜑 → (toℂHil‘(ℝfld freeLMod 𝑋)) = (ℝ^‘𝑋))
2120fveq2d 6182 . . . . . . . . . . . 12 (𝜑 → (dist‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (dist‘(ℝ^‘𝑋)))
2221fveq2d 6182 . . . . . . . . . . 11 (𝜑 → (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
2312, 19, 223eqtrd 2658 . . . . . . . . . 10 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
248, 23eleqtrd 2701 . . . . . . . . 9 (𝜑𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
2524adantr 481 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
26 simpr 477 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝑥𝐺)
27 eqid 2620 . . . . . . . . 9 (MetOpen‘(dist‘(ℝ^‘𝑋))) = (MetOpen‘(dist‘(ℝ^‘𝑋)))
2827mopni2 22279 . . . . . . . 8 (((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))) ∧ 𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
297, 25, 26, 28syl3anc 1324 . . . . . . 7 ((𝜑𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
301ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
31 eqid 2620 . . . . . . . . . . . . . . . . . 18 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
3231rrxtoponfi 40274 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)))
331, 32syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)))
34 toponss 20712 . . . . . . . . . . . . . . . 16 (((TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)) ∧ 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3533, 8, 34syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3635adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → 𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3736, 26sseldd 3596 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → 𝑥 ∈ (ℝ ↑𝑚 𝑋))
3837adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑥 ∈ (ℝ ↑𝑚 𝑋))
39 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
4030, 38, 39hoiqssbl 40602 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
41403adant3 1079 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
42 nfv 1841 . . . . . . . . . . . . . . . 16 𝑖(𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
43 nfv 1841 . . . . . . . . . . . . . . . 16 𝑖(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋))
44 nfcv 2762 . . . . . . . . . . . . . . . . . 18 𝑖𝑥
45 nfixp1 7913 . . . . . . . . . . . . . . . . . 18 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
4644, 45nfel 2774 . . . . . . . . . . . . . . . . 17 𝑖 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
47 nfcv 2762 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4845, 47nfss 3588 . . . . . . . . . . . . . . . . 17 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4946, 48nfan 1826 . . . . . . . . . . . . . . . 16 𝑖(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
5042, 43, 49nf3an 1829 . . . . . . . . . . . . . . 15 𝑖((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
511adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → 𝑋 ∈ Fin)
52513ad2ant1 1080 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑋 ∈ Fin)
53 elmapi 7864 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → 𝑐:𝑋⟶ℚ)
5453adantr 481 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → 𝑐:𝑋⟶ℚ)
55543ad2ant2 1081 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑐:𝑋⟶ℚ)
56 elmapi 7864 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → 𝑑:𝑋⟶ℚ)
5756adantl 482 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → 𝑑:𝑋⟶ℚ)
58573ad2ant2 1081 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑑:𝑋⟶ℚ)
59 simp3r 1088 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
60 simp1r 1084 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
61 simp3l 1087 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
62 opnvonmbl.k . . . . . . . . . . . . . . 15 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
63 eqid 2620 . . . . . . . . . . . . . . 15 (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩) = (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩)
6450, 52, 55, 58, 59, 60, 61, 62, 63opnvonmbllem1 40609 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
65643exp 1262 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6665adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
67663adant2 1078 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6867rexlimdvv 3033 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
6941, 68mpd 15 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
70693exp 1262 . . . . . . . 8 ((𝜑𝑥𝐺) → (𝑒 ∈ ℝ+ → ((𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
7170rexlimdv 3026 . . . . . . 7 ((𝜑𝑥𝐺) → (∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
7229, 71mpd 15 . . . . . 6 ((𝜑𝑥𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
73 eliun 4515 . . . . . 6 (𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
7472, 73sylibr 224 . . . . 5 ((𝜑𝑥𝐺) → 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7574ralrimiva 2963 . . . 4 (𝜑 → ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
76 dfss3 3585 . . . 4 (𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7775, 76sylibr 224 . . 3 (𝜑𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7862eleq2i 2691 . . . . . . . . 9 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
7978biimpi 206 . . . . . . . 8 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
8079adantl 482 . . . . . . 7 ((𝜑𝐾) → ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
81 rabid 3111 . . . . . . 7 ( ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ↔ ( ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8280, 81sylib 208 . . . . . 6 ((𝜑𝐾) → ( ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8382simprd 479 . . . . 5 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8483ralrimiva 2963 . . . 4 (𝜑 → ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
85 iunss 4552 . . . 4 ( 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺 ↔ ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8684, 85sylibr 224 . . 3 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8777, 86eqssd 3612 . 2 (𝜑𝐺 = 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
88 opnvonmbllem2.n . . . 4 𝑆 = dom (voln‘𝑋)
891, 88dmovnsal 40589 . . 3 (𝜑𝑆 ∈ SAlg)
90 ssrab2 3679 . . . . . 6 { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ⊆ ((ℚ × ℚ) ↑𝑚 𝑋)
9162, 90eqsstri 3627 . . . . 5 𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋)
9291a1i 11 . . . 4 (𝜑𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋))
93 qct 39391 . . . . . . 7 ℚ ≼ ω
9493a1i 11 . . . . . 6 (𝜑 → ℚ ≼ ω)
95 xpct 8824 . . . . . 6 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
9694, 94, 95syl2anc 692 . . . . 5 (𝜑 → (ℚ × ℚ) ≼ ω)
9796, 1mpct 39209 . . . 4 (𝜑 → ((ℚ × ℚ) ↑𝑚 𝑋) ≼ ω)
98 ssct 8026 . . . 4 ((𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ ((ℚ × ℚ) ↑𝑚 𝑋) ≼ ω) → 𝐾 ≼ ω)
9992, 97, 98syl2anc 692 . . 3 (𝜑𝐾 ≼ ω)
100 reex 10012 . . . . . . . . . 10 ℝ ∈ V
101100, 100xpex 6947 . . . . . . . . 9 (ℝ × ℝ) ∈ V
102 qssre 11783 . . . . . . . . . 10 ℚ ⊆ ℝ
103 xpss12 5215 . . . . . . . . . 10 ((ℚ ⊆ ℝ ∧ ℚ ⊆ ℝ) → (ℚ × ℚ) ⊆ (ℝ × ℝ))
104102, 102, 103mp2an 707 . . . . . . . . 9 (ℚ × ℚ) ⊆ (ℝ × ℝ)
105 mapss 7885 . . . . . . . . 9 (((ℝ × ℝ) ∈ V ∧ (ℚ × ℚ) ⊆ (ℝ × ℝ)) → ((ℚ × ℚ) ↑𝑚 𝑋) ⊆ ((ℝ × ℝ) ↑𝑚 𝑋))
106101, 104, 105mp2an 707 . . . . . . . 8 ((ℚ × ℚ) ↑𝑚 𝑋) ⊆ ((ℝ × ℝ) ↑𝑚 𝑋)
10791sseli 3591 . . . . . . . 8 (𝐾 ∈ ((ℚ × ℚ) ↑𝑚 𝑋))
108106, 107sseldi 3593 . . . . . . 7 (𝐾 ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
109 elmapi 7864 . . . . . . 7 ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → :𝑋⟶(ℝ × ℝ))
110108, 109syl 17 . . . . . 6 (𝐾:𝑋⟶(ℝ × ℝ))
111110adantl 482 . . . . 5 ((𝜑𝐾) → :𝑋⟶(ℝ × ℝ))
112 fveq2 6178 . . . . . . 7 (𝑘 = 𝑖 → (𝑘) = (𝑖))
113112fveq2d 6182 . . . . . 6 (𝑘 = 𝑖 → (1st ‘(𝑘)) = (1st ‘(𝑖)))
114113cbvmptv 4741 . . . . 5 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑖𝑋 ↦ (1st ‘(𝑖)))
115112fveq2d 6182 . . . . . 6 (𝑘 = 𝑖 → (2nd ‘(𝑘)) = (2nd ‘(𝑖)))
116115cbvmptv 4741 . . . . 5 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑖𝑋 ↦ (2nd ‘(𝑖)))
117111, 114, 116hoicoto2 40582 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)))
1181adantr 481 . . . . 5 ((𝜑𝐾) → 𝑋 ∈ Fin)
119111ffvelrnda 6345 . . . . . . 7 (((𝜑𝐾) ∧ 𝑘𝑋) → (𝑘) ∈ (ℝ × ℝ))
120 xp1st 7183 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝑘)) ∈ ℝ)
121119, 120syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (1st ‘(𝑘)) ∈ ℝ)
122 eqid 2620 . . . . . 6 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑘𝑋 ↦ (1st ‘(𝑘)))
123121, 122fmptd 6371 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (1st ‘(𝑘))):𝑋⟶ℝ)
124 xp2nd 7184 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝑘)) ∈ ℝ)
125119, 124syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (2nd ‘(𝑘)) ∈ ℝ)
126 eqid 2620 . . . . . 6 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑘𝑋 ↦ (2nd ‘(𝑘)))
127125, 126fmptd 6371 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (2nd ‘(𝑘))):𝑋⟶ℝ)
128118, 88, 123, 127hoimbl 40608 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)) ∈ 𝑆)
129117, 128eqeltrd 2699 . . 3 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
13089, 99, 129saliuncl 40305 . 2 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
13187, 130eqeltrd 2699 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  wrex 2910  {crab 2913  Vcvv 3195  wss 3567  cop 4174   ciun 4511   class class class wbr 4644  cmpt 4720   × cxp 5102  dom cdm 5104  ccom 5108  wf 5872  cfv 5876  (class class class)co 6635  ωcom 7050  1st c1st 7151  2nd c2nd 7152  𝑚 cmap 7842  Xcixp 7893  cdom 7938  Fincfn 7940  cr 9920  cq 11773  +crp 11817  [,)cico 12162  distcds 15931  TopOpenctopn 16063  ∞Metcxmt 19712  Metcme 19713  ballcbl 19714  MetOpencmopn 19717  fldcrefld 19931   freeLMod cfrlm 20071  TopOnctopon 20696  toℂHilctch 22948  ℝ^crrx 23152  volncvoln 40515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-ac2 9270  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-ac 8924  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-prod 14617  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-prds 16089  df-pws 16091  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-sbg 17408  df-subg 17572  df-ghm 17639  df-cntz 17731  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-dvr 18664  df-rnghom 18696  df-drng 18730  df-field 18731  df-subrg 18759  df-abv 18798  df-staf 18826  df-srng 18827  df-lmod 18846  df-lss 18914  df-lmhm 19003  df-lvec 19084  df-sra 19153  df-rgmod 19154  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-cnfld 19728  df-refld 19932  df-phl 19952  df-dsmm 20057  df-frlm 20072  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cmp 21171  df-xms 22106  df-ms 22107  df-nm 22368  df-ngp 22369  df-tng 22370  df-nrg 22371  df-nlm 22372  df-clm 22844  df-cph 22949  df-tch 22950  df-rrx 23154  df-ovol 23214  df-vol 23215  df-salg 40292  df-sumge0 40343  df-mea 40430  df-ome 40467  df-caragen 40469  df-ovoln 40514  df-voln 40516
This theorem is referenced by:  opnvonmbl  40611
  Copyright terms: Public domain W3C validator