Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc0 Structured version   Visualization version   GIF version

Theorem opoc0 33970
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc0 (𝐾 ∈ OP → ( 0 ) = 1 )

Proof of Theorem opoc0
StepHypRef Expression
1 opoc1.z . . 3 0 = (0.‘𝐾)
2 opoc1.u . . 3 1 = (1.‘𝐾)
3 opoc1.o . . 3 = (oc‘𝐾)
41, 2, 3opoc1 33969 . 2 (𝐾 ∈ OP → ( 1 ) = 0 )
5 eqid 2621 . . . 4 (Base‘𝐾) = (Base‘𝐾)
65, 2op1cl 33952 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
75, 1op0cl 33951 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
85, 3opcon1b 33965 . . 3 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
96, 7, 8mpd3an23 1423 . 2 (𝐾 ∈ OP → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
104, 9mpbid 222 1 (𝐾 ∈ OP → ( 0 ) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  cfv 5847  Basecbs 15781  occoc 15870  0.cp0 16958  1.cp1 16959  OPcops 33939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-preset 16849  df-poset 16867  df-lub 16895  df-glb 16896  df-p0 16960  df-p1 16961  df-oposet 33943
This theorem is referenced by:  1cvrjat  34241  doch0  36127
  Copyright terms: Public domain W3C validator