Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc1 Structured version   Visualization version   GIF version

Theorem opoc1 33955
Description: Orthocomplement of orthoposet unit. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc1 (𝐾 ∈ OP → ( 1 ) = 0 )

Proof of Theorem opoc1
StepHypRef Expression
1 eqid 2626 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 opoc1.z . . . . . 6 0 = (0.‘𝐾)
31, 2op0cl 33937 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
4 opoc1.o . . . . . 6 = (oc‘𝐾)
51, 4opoccl 33947 . . . . 5 ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( 0 ) ∈ (Base‘𝐾))
63, 5mpdan 701 . . . 4 (𝐾 ∈ OP → ( 0 ) ∈ (Base‘𝐾))
7 eqid 2626 . . . . 5 (le‘𝐾) = (le‘𝐾)
8 opoc1.u . . . . 5 1 = (1.‘𝐾)
91, 7, 8ople1 33944 . . . 4 ((𝐾 ∈ OP ∧ ( 0 ) ∈ (Base‘𝐾)) → ( 0 )(le‘𝐾) 1 )
106, 9mpdan 701 . . 3 (𝐾 ∈ OP → ( 0 )(le‘𝐾) 1 )
111, 8op1cl 33938 . . . 4 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
121, 7, 4oplecon1b 33954 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1311, 3, 12mpd3an23 1423 . . 3 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1410, 13mpbird 247 . 2 (𝐾 ∈ OP → ( 1 )(le‘𝐾) 0 )
151, 4opoccl 33947 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( 1 ) ∈ (Base‘𝐾))
1611, 15mpdan 701 . . 3 (𝐾 ∈ OP → ( 1 ) ∈ (Base‘𝐾))
171, 7, 2ople0 33940 . . 3 ((𝐾 ∈ OP ∧ ( 1 ) ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1816, 17mpdan 701 . 2 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1914, 18mpbid 222 1 (𝐾 ∈ OP → ( 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1992   class class class wbr 4618  cfv 5850  Basecbs 15776  lecple 15864  occoc 15865  0.cp0 16953  1.cp1 16954  OPcops 33925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-preset 16844  df-poset 16862  df-lub 16890  df-glb 16891  df-p0 16955  df-p1 16956  df-oposet 33929
This theorem is referenced by:  opoc0  33956  olm11  33980  1cvrco  34224  1cvrjat  34227  pol1N  34662  doch1  36114
  Copyright terms: Public domain W3C validator