MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccomfpropd Structured version   Visualization version   GIF version

Theorem oppccomfpropd 16559
Description: If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
oppchomfpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
oppccomfpropd.1 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
oppccomfpropd (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)))

Proof of Theorem oppccomfpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2748 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2748 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2748 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2748 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
5 oppchomfpropd.1 . . . . . . 7 (𝜑 → (Homf𝐶) = (Homf𝐷))
65ad2antrr 764 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Homf𝐶) = (Homf𝐷))
7 oppccomfpropd.1 . . . . . . 7 (𝜑 → (compf𝐶) = (compf𝐷))
87ad2antrr 764 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (compf𝐶) = (compf𝐷))
9 simplr3 1241 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐶))
10 simplr2 1239 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐶))
11 simplr1 1237 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐶))
12 simprr 813 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))
13 eqid 2748 . . . . . . . 8 (oppCat‘𝐶) = (oppCat‘𝐶)
142, 13oppchom 16547 . . . . . . 7 (𝑦(Hom ‘(oppCat‘𝐶))𝑧) = (𝑧(Hom ‘𝐶)𝑦)
1512, 14syl6eleq 2837 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦))
16 simprl 811 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦))
172, 13oppchom 16547 . . . . . . 7 (𝑥(Hom ‘(oppCat‘𝐶))𝑦) = (𝑦(Hom ‘𝐶)𝑥)
1816, 17syl6eleq 2837 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
191, 2, 3, 4, 6, 8, 9, 10, 11, 15, 18comfeqval 16540 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐷)𝑥)𝑔))
201, 3, 13, 11, 10, 9oppcco 16549 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
21 eqid 2748 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
22 eqid 2748 . . . . . 6 (oppCat‘𝐷) = (oppCat‘𝐷)
235homfeqbas 16528 . . . . . . . 8 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
2423ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Base‘𝐶) = (Base‘𝐷))
2511, 24eleqtrd 2829 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐷))
2610, 24eleqtrd 2829 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐷))
279, 24eleqtrd 2829 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐷))
2821, 4, 22, 25, 26, 27oppcco 16549 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐷)𝑥)𝑔))
2919, 20, 283eqtr4d 2792 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓))
3029ralrimivva 3097 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓))
3130ralrimivvva 3098 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓))
32 eqid 2748 . . 3 (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶))
33 eqid 2748 . . 3 (comp‘(oppCat‘𝐷)) = (comp‘(oppCat‘𝐷))
34 eqid 2748 . . 3 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
3513, 1oppcbas 16550 . . . 4 (Base‘𝐶) = (Base‘(oppCat‘𝐶))
3635a1i 11 . . 3 (𝜑 → (Base‘𝐶) = (Base‘(oppCat‘𝐶)))
3722, 21oppcbas 16550 . . . 4 (Base‘𝐷) = (Base‘(oppCat‘𝐷))
3823, 37syl6eq 2798 . . 3 (𝜑 → (Base‘𝐶) = (Base‘(oppCat‘𝐷)))
395oppchomfpropd 16558 . . 3 (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷)))
4032, 33, 34, 36, 38, 39comfeq 16538 . 2 (𝜑 → ((compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝐷))𝑧)𝑓)))
4131, 40mpbird 247 1 (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  wral 3038  cop 4315  cfv 6037  (class class class)co 6801  Basecbs 16030  Hom chom 16125  compcco 16126  Homf chomf 16499  compfccomf 16500  oppCatcoppc 16543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-hom 16139  df-cco 16140  df-homf 16503  df-comf 16504  df-oppc 16544
This theorem is referenced by:  yonpropd  17080
  Copyright terms: Public domain W3C validator