MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcmon Structured version   Visualization version   GIF version

Theorem oppcmon 17002
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcmon.o 𝑂 = (oppCat‘𝐶)
oppcmon.c (𝜑𝐶 ∈ Cat)
oppcmon.m 𝑀 = (Mono‘𝑂)
oppcmon.e 𝐸 = (Epi‘𝐶)
Assertion
Ref Expression
oppcmon (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))

Proof of Theorem oppcmon
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcmon.e . . . 4 𝐸 = (Epi‘𝐶)
2 oppcmon.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 fveq2 6664 . . . . . . . . . 10 (𝑐 = 𝐶 → (oppCat‘𝑐) = (oppCat‘𝐶))
4 oppcmon.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
53, 4syl6eqr 2874 . . . . . . . . 9 (𝑐 = 𝐶 → (oppCat‘𝑐) = 𝑂)
65fveq2d 6668 . . . . . . . 8 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = (Mono‘𝑂))
7 oppcmon.m . . . . . . . 8 𝑀 = (Mono‘𝑂)
86, 7syl6eqr 2874 . . . . . . 7 (𝑐 = 𝐶 → (Mono‘(oppCat‘𝑐)) = 𝑀)
98tposeqd 7889 . . . . . 6 (𝑐 = 𝐶 → tpos (Mono‘(oppCat‘𝑐)) = tpos 𝑀)
10 df-epi 16995 . . . . . 6 Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐)))
117fvexi 6678 . . . . . . 7 𝑀 ∈ V
1211tposex 7920 . . . . . 6 tpos 𝑀 ∈ V
139, 10, 12fvmpt 6762 . . . . 5 (𝐶 ∈ Cat → (Epi‘𝐶) = tpos 𝑀)
142, 13syl 17 . . . 4 (𝜑 → (Epi‘𝐶) = tpos 𝑀)
151, 14syl5eq 2868 . . 3 (𝜑𝐸 = tpos 𝑀)
1615oveqd 7167 . 2 (𝜑 → (𝑌𝐸𝑋) = (𝑌tpos 𝑀𝑋))
17 ovtpos 7901 . 2 (𝑌tpos 𝑀𝑋) = (𝑋𝑀𝑌)
1816, 17syl6req 2873 1 (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  tpos ctpos 7885  Catccat 16929  oppCatcoppc 16975  Monocmon 16992  Epicepi 16993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357  df-ov 7153  df-tpos 7886  df-epi 16995
This theorem is referenced by:  oppcepi  17003  isepi  17004  epii  17007  sectepi  17048  episect  17049  fthepi  17192
  Copyright terms: Public domain W3C validator